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Abstract Let ϕ ∈ Mod(S) be an element of the mapping class group of a sur-
faceS. We classify algebraic and geometric limits of sequences{Q(ϕiX,Y )}∞i=1
of quasi-Fuchsian hyperbolic 3-manifolds ranging in a Bers slice. Whenϕ has in-
finite order with finite-order restrictions, there is an essential subsurfaceDϕ ⊂ S
so that the geometric limits have homeomorphism typeS × R − Dϕ × {0}. Typ-
ically, ϕ has pseudo-Anosov restrictions, andDϕ has components with negative
Euler characteristic; these components correspond to new asymptotically periodic
simply degenerate ends of the geometric limit. We show there is ans ≥ 1 depending
onϕ and bounded in terms ofS so that{Q(ϕsiX,Y )}∞i=1 converges algebraically
and geometrically, and we give explicit quasi-isometric models for the limits.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Pleated surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Iteration on a Bers slice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Asymptotic geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Geometric limits and convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7 Quasi-isometric models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1 Introduction

The goal of developing a complete understanding of hyperbolic structures on 3-
manifolds has given rise to a powerful deformation theory. This deformation theory
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has an algebraic nature, as it parametrizes hyperbolic 3-manifolds with a given fun-
damental group.

The deformation theory is geometrically quite coarse: important geometric in-
formation can be lost in the passage to limits. Indeed, consider two familiar limiting
processes: given an essential simple closed curveδ on the boundary of a hyperbolic
3-manifoldM , pinchingδ and Dehn twisting aboutδ describe two routes to the
samealgebraic limit manifoldM∞ on the boundary of the deformation space. But
while the pinched manifolds geometrically resembleM∞ late in their approach, the
geometry of the twisted manifolds converges to that of a hyperbolic 3-manifoldN
not even homeomorphic toM∞. To recover this geometric information one con-
siders thegeometric limitsthese approaches produce, giving rise to the study of
algebraic and geometric limitsof hyperbolic 3-manifolds.

One might envision a classification of algebraic and geometric limits. In this
paper, we take an initial step in this direction by considering algebraic and geometric
limits that arise from a minimal amount of data: a pair of homeomorphic finite-area
hyperbolic Riemann surfacesX andY and amapping classϕ. To state our results
we review the basic setting.

LetS be an oriented surface of negative Euler characteristic (assumeS is closed
for simplicity). Let Teich(S) denote itsTeichm̈uller spacewith its automorphism
group Mod(S), themapping class group. Let Γ (X,Y ) denote the quasi-Fuchsian
Bers simultaneous uniformizationof (X,Y ) ∈ Teich(S)×Teich(S); thenΓ (X,Y )
determinesQ(X,Y ) = H 3/Γ (X,Y ) as its quotient hyperbolic 3-manifold.

The quasi-Fuchsian manifoldsQF (S) lie in the subspaceAH(S) of the repre-
sentation varietyV(π1(S)) = Hom(π1(S),PSL2(C ))/conj consisting of of faith-
ful representations with discrete (Kleinian) image (V(π1(S) carries thealgebraic
topology). Each conjugacy class[ρ] ∈ AH(S) determines a hyperbolic 3-manifold
M = H 3/ρ(π1(S)).

One obtains aBers sliceBY = {Q(X,Y ) | X ∈ Teich(S)} in QF (S) by
fixing Y in the second factor:BY is a precompact copy of Teichm¨uller space in
AH(S). Its closureBY gives aBers compactificationof Teichmüller space, and a
resultingBers boundary∂BY . A mapping classϕ ∈ Mod(S) naturally determines a
sequence in a Bers slice via itsiteration{Q(ϕiX,Y )}∞i=1 ⊂ BY onX ∈ Teich(S).

Geometric convergencerefers to convergence in theHausdorff topologyof the
images{ρi(π1(S))} = Γi after conjugating soρi → ρ: i.e.{Γi} converges toΓ if

1. For anyγ ∈ Γ there areγi ∈ Γi so thatγi → γ, and
2. if elementsγij ∈ Γij converge, then their limit lies inΓ .

ThenN = H 3/Γ is thegeometric limit. Any convergent sequence inAH(S) has a
geometric limit after passing to a subsequence. Our main result is (theorem 7.3):

Theorem 1 HOMEOMORPHISM TYPES. There is an essential subsurfaceDϕ ⊂ S
naturally associated toϕ so that any geometric limitN of {Q(ϕiX,Y )}∞i=1 has the
homeomorphism type

N ∼= S × R −Dϕ × {0}
if Dϕ 6= S andN ∼= S × R otherwise.
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The subsurfaceDϕ ⊂ S records the locus of the infinite order dynamics ofϕ:
the complementS − Dϕ is the maximal subsurface on whichϕ restricts to a fi-
nite order mapping class (see definition 2.10). The limit representationρ has image
ρ(π1(S)) < Γ , so the algebraic limitQ∞ = H 3/ρ(π1(S)) coversN by a local
isometry.

One may ask whether the passage to subsequences is necessary. In particular,
the question ofconvergenceof iteration of mapping classes on a Bers slice was
originally posed by L. Bers and answered by J. Cannon and W. Thurston the case
whenϕ is pseudo-Anosov, i.e. no power ofϕ stabilizes any non-peripheral essential
simple closed curve up to isotopy.

As each algebraic accumulation pointQ∞ ∈ BY and each geometric accumula-
tion pointN are hyperbolic 3-manifolds, one approach to convergence is to compare
accumulation points geometrically. We go on to answer Bers question in general by
giving explicit models for the algebraic and geometric limits of iteration. Much of
the work lies in the following:

Theorem 2 QUASI-ISOMETRY TYPES. Let{Q(ϕiX,Y )}∞i=1 have geometric limit
N . Then the quasi-isometry type ofN depends only on the mapping classϕ.

A more precise formulation appears in proposition 7.1 and theorem 7.2 (§7).
Iteration of finite-order mapping classes does not converge; one must first pass

to a finite power to obtain a convergent sequence. In general, there is an integers
so that passing to a powerϕs that isstable(each finite order restriction ofϕs is the
identity) ensures convergence. In other words, we have (theorem 6.1):

Theorem 3 ITERATION CONVERGES. Letϕ ∈ Mod(S) be a mapping class. Then
there is ans ≥ 1 depending onϕ and bounded in terms ofS so that the sequence
{Q(ϕsiX,Y )}∞i=1 converges algebraically and geometrically.

How ϕ determines the quasi-isometry type ofN is revealed over the course of
the paper. We illustrate the process in key examples, given below.

Examples

In analyzing any sequence{Q(Xi, Y )}∞i=1 in a Bers compactificationBY natu-
ral questions arise. What happens to the surfacesXi in the limit? Which elements
have become parabolic? Which ends of the algebraic limit are geometrically finite,
and which degenerate? What is the geometric limit? Here are the answers for three
basic examples of mapping class iteration.

I. ψ ∈ Mod(S) is pseudo-Anosov.A mapping classψ ∈ Mod(S) is pseudo-
Anosovif no power ofψ preserves the isotopy class of any essential simple closed
curve onS. For this case, the surfacesψiX degenerate, leaving atotally degener-
ate limit Qψ (i.e. ∂Qψ = Y ) with no new parabolic elements. The algebraic and
geometric limits ofQ(ψiX,Y ) agreegiving an example ofstrong convergence.

By contrast, the following iterations donot converge strongly.

II. ϑ ∈ Mod(S) is a Dehn twist.Under iteration of aDehn twistϑ aboutδ (fig-
ure 1) the algebraic and geometric limits ofQ(ϑiX,Y ) differ. In the algebraic limit,
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Figure 1. Examples of mapping classes.

the surfacesϑiX have split into two quasi-Fuchsian punctured tori corresponding
to L andR. The induced representationsρi converge (up to conjugacy) onδ to
a parabolic element, while the cyclic groups〈ρi(δ)〉 converge geometrically to a
rank-2 parabolic group (isomorphic toZ ⊕ Z), indicating the presence of a new
torus-endE ∼= T 2 × [0,∞) in the geometric limitN ; N has homeomorphism type

N ∼= S × R − δ × {0}.
Our investigation is motivated by the following example.

III. ϕ ∈ Mod(S) is partially pseudo-Anosov.Let ϕ = ϑα2 ◦ ϑβ2 the product of
Dehn twists aboutα2 andβ2 (figure 1). The induced mapping classϕ|R ∈ Mod(R)
is pseudo-Anosov;ϕ is called thehalf-pseudo-Anosovmapping class.

In the algebraic limitQϕ, the Riemann surfacesϕiX partially degeneratealong
the subsurfaceR: the curveδ is parabolic andQϕ − {cusps} has a quasi-Fuchsian
endL× R+ as well as adegenerate endR× R+ .

The geometric limitN has the homeomorphism type

N ∼= S × R −R × {0}.
Now thesubsurfaceR recedes to infinity, leaving new degenerate endsER andE′

R
of N − {cusps} in its wake; each is asymptotically periodic byϕ|R (see figure 2).

E′
R

ER
ER

NQϕ

YY

X

Figure 2. The algebraic and geometric limits of {Q(ϕiX,Y )}∞i=1.
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Outline of the proof

We outline the proof that iteration of the half-pseudo-Anosov classϕ (example
III, above) converges and describe the quasi-isometry type of its geometric limit.

Step 1) Quasi-isometry invariants.Thurston’s theory of pleated surfaces reveals
that in any algebraic accumulation pointQϕ of {Q(ϕiX,Y )}∞i=1 in ∂BY , δ has
become parabolic, andQϕ−{cusps} has developed a simply degenerate endER ∼=
R × R+ . The endER has the property that for any essential simple closed curve
γ ⊂ R, the curvesϕi(γ) ⊂ R determine closed geodesicsϕi(γ)∗ in Qϕ that leave
every compact subset ofQϕ.

Step 2) Asymptotic geometry.Actually, the endER is asymptotically periodic:ER
is quasi-isometric to one end of the periodicZ-coverMϕ−1|R of the mapping torus

Tϕ−1|R = R× I/(x, 0) ∼ (ϕ−1|R(x), 1)

with quasi-isometry constant tending to 1 out the end.
It follows that the quasi-isometric geometry ofER depends only on the iso-

topy classϕ|R. Since any two algebraic accumulation pointsQϕ andQ′
ϕ have their

topology, parabolic locus, and corresponding ends all determined byϕ up to quasi-
isometry, the quasi-isometry type of any algebraic limit depends only onϕ. Hence,
any two algebraic accumulation pointsQϕ andQ′

ϕ admit a quasi-isometry compat-
ible with markings.

Step 3) The geometric limit.By a re-marking trick, any geometric limitN is also
the geometric limit of a subsequence ofϕ−i(Q(ϕiX,Y )) = Q(X,ϕ−iY ): the same
sequence of manifoldsre-markedby ϕ−i. Thus,N is also covered the algebraic
limit Qϕ−1 of this re-marked sequence, which has a similar but inverted structure.

By a gluing lemma(lemma 6.5) the coversQϕ andQϕ−1 are compatible with
gluing dataτ : an orientation-reversing involution of thequasi-Fuchsian boundary
∂qf(Qϕ tQϕ−1) (the subset of the conformal boundary ofQϕ tQϕ−1 whose cor-
responding covers are quasi-Fuchsian). The limitsQϕ andQϕ−1 may be glued
(by Klein-Maskit combination) along quasi-Fuchsian ends corresponding toL to
form a complete hyperbolic manifold(Qϕ t Qϕ−1)/τ that also coversN by a lo-
cal isometry. The covering extends to an embedding on the conformal boundary
∂

(
(Qϕ tQϕ−1)/τ

)
= X t Y into ∂N , so the cover is an isometry. Because the

gluingτ identifies the quasi-Fuchsian ends ofQϕ andQϕ−1 corresponding toL, the
geometric limitN has homeomorphism typeN ∼= S×R−R×{0} (cf. theorem 1).

Step 4) Geometric convergence.Any two geometric accumulation pointsN and
N ′ are realized as gluings(QϕtQϕ−1)/τ and(Q′

ϕtQ′
ϕ−1)/τ of pairs of algebraic

accumulation points. Thus, Step 2) implies there is a quasi-isometryΘ : N → N ′
whose lifts toQϕ andQϕ−1 are compatible with markings. Since∂N = X t Y =
∂N ′,Θ is homotopic to an isometryξ, so the sequence converges geometrically.

Step 5) Algebraic convergence.The isometryξ lifts to a marking-preserving isom-
etry ξ̃ : Qϕ → Q′

ϕ, so the sequence converges algebraically.
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Remarks on the general case:Examples I, II, and III present the prototypes for
iteration of general mapping classes onBY ; the arguments fit together to handle the
general case, after passing to an iterate ofϕ whose finite order behavior stabilizes.

Though our proof makes use of Thurston’s construction of a hyperbolic structure
on Tϕ|R , a quasi-isometrically correct model for the endE arising inQϕ can be
givencombinatoriallyby gluing a half-infinite collection of copies ofR×I together
end-to-end byϕ|R (the analogous construction applies toQϕ−1). Hence, a concrete
quasi-isometric model for the gluing(Qϕ tQϕ−1)/τ , and hence for the geometric
limit, may be constructed directly. We discuss this in section 7.

Limit Sets

The action of the Kleinian covering groupΓi forQ(ϕiX,Y ) partitionsĈ into its
limit setΛi, where it acts chaotically, and its domain of discontinuityΩi = Ĉ −Λi.
While Λi converges in the Hausdorff topology to the limit setΛG of the geometric
limit ΓG of Γi, the limit setΛA of the algebraic limit is strictly smaller thanΛG
when the convergence is not strong. That the componentΩY ⊂ (Ĉ −ΛA) covering
Y ⊂ ∂Qϕ embedsin ΩG = Ĉ − ΛG will be an important tool in our proof.

                        

Figure 3. Limit sets for algebraic and geometric limits for example II.

In figures 3 and 4 we have rendered1 the limit sets of the algebraic and geometric
limits in examples II and III for certainX andY . In figure 3,ΩY contains the point
at infinity and embeds in̂C − ΛG. In figure 4,ΩY is the central component with
non-circle boundary; it embeds into a portion of the upper hemisphere inĈ − ΛG
after a PSL2(C ) change of coordinates.

History and References

The question of convergence of iteration was originally raised in [Bers3] wherein
L. Bers proves that any accumulation point of pseudo-Anosov iteration is totally
degenerate and free of accidental parabolics.

1 We employ computer programs of Curt McMullen.
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Figure 4. Limit sets for algebraic and geometric limits for example III.

Algebraic and geometric convergence for the pseudo-Anosov case were later
proven in [CT,§7]; a detailed proof has appeared more recently in [Mc2,§3]. An
expository account of examples II and III appears in [Br1]. The geometric limits
in examples I and II are employed: (I) in Thurston’s geometrization of 3-manifolds
fibering over the circle [Th4] [Otal1] [Mc2], and (II) in the proof of non-continuity
of the action of the modular group onBY [KT]. Our study completes the general
picture of algebraic and geometric limits that arise under iteration ofϕ ∈ Mod(S)
on a Bers slice.

We remark that the homeomorphism (and thence quasi-isometry) type of the
geometric limit of half-pseudo-Anosov iteration differs from other examples of non-
strong convergence presented in [KT,§3], [Th4,§7], and [BO] in which all new ends
of the geometric limit are rank-2 cusps.

Plan of the paper: Section 2 presents necessary background, and section 3 intro-
duces results from pleated surface theory. Section 4 builds up a complete picture of
the quasi-isometry invariants of any algebraic accumulation pointQϕ. Section 5 ap-
plies Thurston’s construction of hyperbolic structures on 3-manifolds fibering over
the circle to prove that the ends arising from induced pseudo-Anosov dynamics of
ϕ are asymptotically periodic; this determines the quasi-isometry type ofQϕ.

In Section 6 we prove convergence of iteration, giving a direct construction of
the geometric limit by gluing together algebraic limits. Finally, section 7 describes
quasi-isometric models for algebraic and geometric limits implicit in section 6. We
show how these models can be constructed concretely fromϕ without reference to
specific hyperbolic structures, thereby elucidating how the homeomorphism type
changes in the geometric limit.

Acknowledgments.This paper presents results of my doctoral dissertation [Br3]
completed at U.C. Berkeley. I would like to thank my advisor, Curt McMullen, for
his suggestions and guidance, and the referees for many useful comments.



8 Jeffrey F. Brock

2 Preliminaries

Surfaces.Let S be a compact connected oriented topological surface of negative
Euler characteristic. WhenS has non-empty boundary, denote by int(S) its interior
S − ∂S.

TheTeichm̈uller spaceTeich(S) of S parametrizes finite area hyperbolic struc-
tures onS up to isotopy: finite area hyperbolic surfacesX , each equipped with
an orientation-preserving homeomorphism, ormarkingf : int(S) → X with the
equivalence

(f,X) ∼ (g, Y )

when there is an orientation-preserving isometryφ : X → Y such thatφ ◦ f is
homotopic tog.

An elementβ ∈ π1(S) is peripheral if it is freely homotopic to a component
of ∂S. Any element(f,X) ∈ Teich(S) determines a discrete faithful representa-
tion f∗ : π1(S) → PSL2(R) = Isom+(H 2) up to conjugacy, such thatf∗ sends
peripheral elements ofπ1(S) to parabolic elements of Isom+(H 2).

A subsurfaceR ⊂ S of a compact oriented surfaceS is a compact 2-dimensional
submanifold ofS. An essential subsurfaceis a subsurfaceR ⊂ S whose boundary
is homotopically essential. WhenR = R1 t R2 is a disjoint union of compact
oriented surfaces, each with negative Euler characteristic, we define Teich(R) =
Teich(R1)× Teich(R2). We will often refer to surfacesX ∈ Teich(S) suppressing
the implicit marking.

Kleinian groups and hyperbolic 3-manifolds.A Kleinian groupΓ is a discrete
subgroup of Isom+H 3 = PSL2(C ). Naturally associated to any Kleinian groupΓ
are its limit setΛ where any orbitΓ (x), x ∈ H 3 , accumulates on̂C , its domain
of discontinuityΩ = Ĉ − Λ where the action ofΓ is properly discontinuous, and
theconvex hullch(Λ) of Λ, the smallest hyperbolically convex subset inH 3 whose
closure inH 3 ∪ Ĉ contains the limit set. When necessary, we will use the notation
Ω(Γ ), Λ(Γ ) to denote the domain of discontinuity and limit set ofΓ .

WhenΓ is torsion-free, the quotientM = H 3/Γ is a complete hyperbolic 3-
manifold. By adjoining the domain of discontinuity toH 3 and passing to the quo-
tient, we extendM to itsKleinian manifold

M =
(
H 3 ∪Ω)

/Γ

with its conformal boundary∂M = Ω/Γ . The quotient ch(Λ)/Γ = core(M) is
the minimal convex subset ofM called itsconvex core. If a metricε-neighborhood
Nε(core(M)) of the convex core ofM has finite volume, thenM and its Kleinian
uniformizationΓ aregeometrically finite. Otherwise, they aregeometrically infinite.

Surface groups.Let H(S) be the set of all complete hyperbolic 3-manifoldsM
equipped with homotopy equivalencesf : S → M such thatf∗ sends peripheral
elements to parabolics, with the equivalence(f1 : S → M1) ∼ (f2 : S → M2)
when there is an orientation-preserving isometryφ : M1 → M2 such thatφ ◦ f1 is
homotopic tof2.
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A choice ofbaseframeω ∈ M determines a Kleinian groupΓ by the require-
ment that the standard framẽω at the origin inH 3 lie overω in the covering projec-
tion

(H 3 , ω̃) → (H 3 , ω̃)/Γ = (M,ω).

The homotopy equivalencef : S → (M,ω) from S to thebasedhyperbolic man-
ifold (M,ω) determines a representationf∗ : π1(S) → PSL2(C ). The image is
discrete, andf∗ is faithful.

EquippingM ∈ H(S) with the additional data of a baseframe, we obtain the
setHω(S) of marked based hyperbolic manifolds(f : S → (M,ω)) by requiringφ
to preserve baseframes. GivingHω(S) the compact-open topology on the represen-
tationsf∗ (the natural topology onV(π1(S))), we obtain the spaceAHω(S) . We
giveH(S) the quotient topology from the natural mapHω(S) → H(S) obtained
by forgetting the baseframe and call the resulting spaceAH(S).

As with Teichmüller space, a hyperbolic manifoldM ∈ AH(S) and any lift
(M,ω) of M toAHω(S) are implicitly marked.

Quasi-isometries.Let M andN be Riemanniann-manifolds. A diffeomorphism
h : M → N is called anL-quasi-isometry2 if there is a real numberL > 1 such that
given any non-zero tangent vectorv ∈ TM ,

1
L
≤ |Dh(v)|

|v| ≤ L.

A quasi-isometryh : M → N has aquasi-isometry constantL(h) which is the
infimum over allL such thath is anL-quasi-isometry.

The quasi-isometric distanced(., .) onH(S) × H(S) is defined as follows: if
M0 = (f : S →M) andN0 = (g : S → N) in H(S) then we define

d(M0,N0) = inf
{h | h◦f'g}

logL(h).

If there is no orientation-preservingh in the appropriate homotopy class, define
d(M0,N0) = ∞. LetQH(S) denoteH(S) with thequasi-isometric topologyin-
duced byd(., .). Compactness theorems for quasi-conformal mappings [LV] [Gard,
§1.8, Lem. 6] guarantee thatd(., .) is lower semi-continuous [Mc2, Prop. 3.1].

Algebraic and geometric convergence.Let X be a separable metric space. Let
Cl(X) denote its set of closed subsets.

Definition 2.1 In theHausdorff topologyon Cl(X), a sequence{Yi} tends toZ if

1. For everyz ∈ Z, there areyi ∈ Yi such thatlimi→∞ yi = z.
2. For any subsequenceYij , and elementsyij ∈ Yij , if yij → z thenz ∈ Z.

The set Cl(X) is compact in the Hausdorff topology (see [HY,§2-16]). Giving the
discrete subgroups of PSL2(C ) the Hausdorff topology as closed subsets we obtain
thegeometric topologyon Kleinian groups.

2 Our terminology, somewhat non-standard since the advent of coarse geometry, follows [Mc2].
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Thegeometric topologyon based hyperbolic 3-manifolds(M,ω) is the geomet-
ric topology on their Kleinian covering groupsΓ . Let H3 be the set of all based
hyperbolic 3-manifolds(M,ω). In intrinsic terms, a sequence of based hyperbolic
manifolds{(Mi, ωi)} converges to a based hyperbolic manifold(N,ω) in the geo-
metric topology if and only if for any compact submanifoldK ⊂ N containingω,
there are quasi-isometrieshi : K →Mi such thath(ω) = ωi and so thathi tends to
an isometry in theC∞ topology (see [BP, Thm. E.1.13]).

Given a convergent sequenceMi → M in AH(S), convergent lifts(Mi, ωi)
to AHω(S) determine convergent representationsρi → ρ. If the Kleinian groups
ρi(π1(S)) converge geometrically toΓ , it follows from definition 2.1 (part 2) that
ρ(π1(S)) < Γ , soM naturally coversN = H 3/Γ . We shall see thatρ(π1(S)) can
often be a proper subgroup ofΓ [KT, §3] [Th1, §9.1].

We now illustrate a baseframe independent notion of geometric convergence of
markedhyperbolic manifolds inAH(S).

Definition 2.2 Let marked hyperbolic 3-manifolds{Mn} ⊂ AH(S) converge al-
gebraically toM∞ in AH(S). Then{Mn} converges geometricallyto a limit N
if there are convergent lifts{(Mn, ωn)} to AHω(S) so that the sequence of based
hyperbolic 3-manifolds(Mn, ωn) converges geometrically to(N,ω).

While the baseframes are necessary to define this notion of geometric conver-
gence, the geometric limitN does not depend on the choices of baseframes.

Proposition 2.3 ALGEBRAIC COVERS GEOMETRIC. The marked manifoldsMn

converge geometrically to a unique geometric limitN after passing to a subse-
quence. The limitN is covered byM∞ by a local isometry.

Proof.Let (Mn, ωn) → (M∞, ω∞) be convergent lifts ofMn toAHω(S). Conver-
gence of(Mn, ωn) implies thatωn lies inM(r,R) for 0 < r < R < ∞. By com-
pactness, we may extract a geometric limit(N,ω) covered byM∞ after passing to
a subsequence [Mc2, Prop. 2.4]. ConjugaciesΦn ∈ PSL2(C ) between representa-
tions induced by any two convergent sequences of lifts toAHω(S) converge to a
conjugacy of algebraic and geometric limits, soN is unique. ut
Definition 2.4 A sequence{Mn} ⊂ AH(S) convergesstronglyto a limitM∞ if it
converges both algebraically and geometrically toM∞.

We will see many examples of sequences that donot converge strongly.

Quasi-Fuchsian groups and manifolds.A quasi-FuchsiangroupΓ is a Kleinian
group that preserves a directed Jordan curve inĈ . The quotientΩ(Γ )/Γ is a pair
of Riemann surfacesX andY . Endowed with an isomorphismρ : π1(S) → Γ , the
Γ -equivariant conformal structures on the two componentsΩX andΩY of Ω(Γ )
determine a pair of points in Teich(S) × Teich(S) (S is S with its orientation re-
versed), and the conjugacy class[ρ] determines an element ofAH(S).

Conversely, in [Bers1] Bers exhibited a homeomorphism

Q : Teich(S)× Teich(S) → QF (S) ⊂ AH(S)
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from the product of Teichm¨uller spaces to the quasi-Fuchsian representations via
simultaneous uniformizationof a pair(X,Y ) ∈ Teich(S)×Teich(S). The surfaces
X = ∂cQ(X,Y ) andY = ∂cQ(X,Y ) make up∂Q(X,Y ).

The convex core boundary∂(core(Q(X,Y ))) inherits the structure of a pair of
hyperbolic surfaces from its path metric (see [EM, Thm. 1.12.1]). Each component
is isotopic outside of the convex core to one of the conformal boundary components,
which we say it “faces.” Let∂h(Q(X,Y )) and∂h(Q(X,Y )) be the components of
the convex core boundary facingX andY respectively.

Bers’ boundary. Bers proved that the sliceBY = {Q(X,Y ) | X ∈ Teich(S)} of
QF (S) is an embedded copy of Teichm¨uller space with compact closure inAH(S).
The Bers sliceBY ⊂ QF (S) and the resultingBers boundary∂BY ⊂ AH(S)
lie central to many issues in the deformation theory of hyperbolic 3-manifolds. In
[Bers2], Bers classifies elements(f : S →M) in ∂BY :

1. If f∗(γ) is parabolic for some non-peripheral elementγ ∈ π1(S), thenM is a
cuspandγ is anaccidental parabolic.

2. If the conformal boundary∂M is connected, then∂M = Y , andM is totally
degenerate. The imagef∗(π1(S)) is a totally degenerate group.

3. If ∂M = Y tX1 t . . . tXq and0 <
∑q

n=1 area(Xn) < area(Y ), thenM is
partially degenerate, andf∗(π1(S)) is apartially degenerate group.

Only cases (2) and (3) are mutually exclusive.

Geodesic and measured laminations.A geodesic laminationλ on a finite area
hyperbolic surfaceX ∈ Teich(S) is a closed subset ofX given as a disjoint union of
simple, complete geodesics calledleavesof the lamination (see [Th1, pp. 8.25] [CB,
pp. 39]). We give the geodesic laminationsgl(X) the pleating topology, in which
laminations{λi} converge to a laminationλ if any l in λ is the limit of li ∈ λi (cf.
theThurston topologyof [CEG, Def. 4.1.10]). Canonical homeomorphisms between
any pair of hyperbolic surfacesX andY in Teich(S) induce homeomorphisms of
gl(X) andgl(Y ). This gives a universalgeodesic lamination spaceGL(S); a point
λ ∈ GL(S) determines a geodesic lamination on anyX ∈ Teich(S).

Let S be the set of all isotopy classes of essential non-peripheral simple closed
curves onS. As any elementγ ∈ S has a unique geodesic representative on any
hyperbolic surface, there is a natural inclusionS ↪→ GL(S). The intersection num-
ber i : S×S→ Z≥0 counts the minimal number of transverse intersection points of
representatives of(γ, δ) ∈ S× S in their respective isotopy classes.

Let ι : R+ × S → RS be the embedding〈ι(tγ)〉α = ti(α, γ). Then themea-
sured laminationsML(S) on S are obtained by taking the closure of the image
ML(S) = ι(R+ × S). Each measured laminationµ determines atransversely mea-
sured geodesic lamination; the underlying geodesic lamination|µ| is called thesup-
port of µ (see [Bon2,§1] [FLP] [EM, 3.5.1]).

The modular group. For our discussion of the Modular group, letR be a compact
oriented, butpossibly disconnectedsurface, each component of which has negative
Euler characteristic. Themodular groupMod(R) is the group of isotopy classes
of orientation-preserving self-homeomorphisms ofR, calledmapping classes. The
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group Mod(R) acts onS(R), the isotopy classes of non-peripheral essential simple
closed curves onR. Thurston extended this action toML(R) = ML(R1)× . . .×
ML(Rq) whereR = R1 t . . . t Rq to give a classification of mapping classes
[Th3], which we now discuss.

A partition of R is a familyΠ ⊂ S(R) of distinct isotopy classes of disjoint
curves. A mapping classϕ is said to bereducedby Π if ϕ(Π) = Π . If the only
invariant partition forϕ is the trivial partition,ϕ is irreducible. Thurston proved that
an irreducible mapping class either has finite order, or has the following type:

Definition 2.5 A mapping classψ ∈ Mod(R) is pseudo-Anosovif there exist mea-
sured laminationsµs andµu inML(R) (thestableandunstablelaminations forψ)
and a real numberc > 1 so thatψ(µs) = 1

cµ
s andψ(µu) = cµu.

We now discuss thereduciblecase.
A partitionΠ of S naturally determines a complementary essential subsurface

SΠ up to isotopy each component of which has negative Euler characteristic;SΠ
is determined by choosing disjoint oriented open annular neighborhoodsN (Π) of
disjoint curves representingΠ and forming the complementSΠ = S −N (Π).

An invariant partitionΠ for ϕ ∈ Mod(S) induces a mapping classϕΠ ∈
Mod(SΠ) by restriction. WhenΠ decomposesS into disjoint subsurfacesF andG
invariant byϕ, denote byϕ|F ∈ Mod(F ) andϕ|G ∈ Mod(G) the mapping classes
naturally induced by restriction. The subsurfaces and induced mapping classes are
well defined as isotopy classes. In this language, Thurston’s classification takes the
following form [Th3, Thm. 4] [FLP, Exp. 9] [BLM, Thm. C].

Theorem 2.6 (Thurston)Any mapping classϕ ∈ Mod(S) determines a partition
Π and essential subsurfacesSF andSP ofS so that the triple(Π,SF, SP) is unique
andϕ-invariant up to isotopy, and so that:

1. SΠ decomposes asSΠ = SF t SP,
2. ϕF = ϕ|SF

has finite order andϕP = ϕ|SP
is pseudo-Anosov, and

3. Π is minimal among all partitions satisfying (1) and (2).

The triple (Π,SF, SP), called theNielsen-Thurstondecomposition ofS for ϕ, is
well defined up to isotopy (the uniqueness ofΠ is proven in [BLM, Thm. C]). Its
finite-order partϕF acts on itsfinite-order subsurfaceSF and itspseudo-Anosov
part ϕP acts on itspseudo-Anosov subsurfaceSP. Theminimal reducing partition
Π is empty if and only ifϕ is irreducible. When necessary, we useΠ(ϕ), SF(ϕ)
andSP(ϕ) to denote dependence on the mapping classϕ.

We will be interested in the following simplifying property for mapping classes.3

Definition 2.7 A mapping classϕ ∈ Mod(S) is stableif its finite order partϕF is
the identity element ofMod(SF(ϕ)).

SinceϕF has finite order,ϕ ∈ Mod(S) has a power that is stable.

Definition 2.8 Thestable powerfor ϕ is the least integers ∈ Z+ such thatϕs is
stable. Callϕs thefirst stable iterateof ϕ.

3 Cf. the similar notion of apuremapping class of [Iv, pp. 3].
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By Hurwitz’ theorem (see [Gr, Thm. 1.7.1])s is uniformly bounded in terms ofS.
Let δ lie inΠ(ϕ). We sayδ is anisolated Dehn twisting curvefor ϕ if there is an

essential subsurfaceSδ ⊂ S for which δ is non-peripheral inSδ, any stable iterate
ϕs preservesSδ up to isotopy, andϕs|Sδ

represents a power of a Dehn-twist about
δ in Mod(Sδ). Then the following corollary may be readily verified.

Corollary 2.9 If δ lies in Π(ϕ), then eitherδ is peripheral inSP(ϕ) or δ is an
isolated Dehn twisting curve forϕ. ut

The Nielsen-Thurston decomposition forϕ encodes the locus of its infinite order
dynamics:

Definition 2.10 Letϕ be an element ofMod(S). Thedynamic subsurfaceDϕ ⊂ S

is the complementS − SF(ϕ) of the finite order subsurface forϕ.

Note that the subsurfaceDϕ is essential and contains annular components whenϕ
has isolated Dehn twisting curves.

Actions of mapping classes on deformation spaces.The modular group Mod(S)
acts on Teich(S) andAH(S) by precomposing the marking byϕ−1. The action on
AH(S) restricts toQF (S) = Teich(S) × Teich(S) by acting simultaneously on
each factor. Our primary concern will be with the action of the modular group on
Bers’ sliceBY obtained by lettingϕ act on the first factor.

Structure theory of hyperbolic 3-manifolds. By a theorem of P. Scott, any 3-
manifoldM with finitely generated fundamental group contains acompact core
M⊂M : a compact submanifoldM of M whose inclusion is a homotopy equiva-
lence [Scott]. A theorem of McCullough [McC, Thm. 2] gives a relative version.

Let M(r,R) denote the subset ofM where the injectivity radius inj: M → R+

lies in (r,R). For ε less than a universalε3 each componentT of the Margulis
ε-thin part M(0,ε) has a standard form:T is either aMargulis tube, a solid torus
neighborhood of a short geodesic, or acusp, the quotient of a horoballB in H 3 by
aZ, or Z⊕ Z parabolic action stabilizingB. Thecuspidal thin partof P (M) of
M is the components ofM(0,ε3) corresponding to cusps ofM (see e.g. [BP, Thm.
D.3.13]).

Definition 2.11 LetM be a complete hyperbolic 3-manifold with finitely generated
fundamental group and cuspidal thin partP . A relative compact core(M,P) for
M − P relative toP is a smoothly embedded compact submanifoldM ⊂ M −
P with a collectionP ⊂ ∂M of compact incompressible annuli and tori called
its parabolic locussuch that each component of∂M− int(P) has negative Euler
characteristic, and

1. M∩ ∂P = P,
2. the inclusionι : (M,P) → (M − P, ∂P ) is a homotopy equivalence,
3. for each componentPs of P there is a componentPt(s) of P such thatι(Pt(s))

lies in∂Ps.

We denote by∂0M the complement∂M− int(P) of the interior of the parabolic
locus in∂M. CallM − P thepared submanifoldofM .
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We state the resulting decomposition ofM .

Decomposition 2.12The pared submanifoldM − P decomposes into a relative
compact core(M,P) relative toP , and a finite collection ofends{Em}pm=1 of
(M − P ) meetingM in surfacesSm ⊂ ∂0M.

Remark: As has become customary (cf. [Th1] [Mc2]), we refer to as “ends” of
M − P theneighborhoodsEm of the ends of the topological spaceM − P .

When the endEm has finite volume intersection with the convex core ofM , it
is calledgeometrically finiteandgeometrically infiniteotherwise. The following is
well known (see [EM] or [Min, Thm. 5.2]).

Theorem 2.13 The quasi-isometry type ofM depends only on the topology of its
relative compact coreι : (M,P) → (M − P, ∂P ), its parabolic locusP, and the
quasi-isometry types of its geometrically infinite endsEm marked byι|Sm . ut

We call the intersection(M−P )∩core(M) thepared submanifold of the convex
core ofM . The following is an evident consequence.

Corollary 2.14 The quasi-isometry type ofM depends only on the quasi-isometry
type the pared submanifold of the convex core ofM . ut

The following theorem recasts of a theorem of Marden [Mar, Prop. 5.4]:

Theorem 2.15 Let (f : S → M) ∈ ∂BY . Let the curves{γj}kj=1 ⊂ S represent
its accidental parabolics. Then decomposition 2.12 determines a relative compact
coreι : (S × I,P) →M − P , where

P =
(
∪kj=1Aj × {0}

)
∪ (∂S × I)

is a collection of annuli such thatAj has core curveγj. Incompressible surfaces
SY = S×{1} andSm×{0} ⊂ S×{0},m = 1, . . . , p, make up∂(S×I)− int(P)
and cut off endsEY and {Em}pm=1 of the pared submanifold with the following
properties.

1. The fixed end.The surfaceSY cuts off a geometrically finite endEY asymptotic
to Y ⊂ ∂M , ι∗(π1(SY )) = f∗(π1(S)) stabilizes a unique invariant component
ΩY , withΩY /f∗(π1(S)) ∼= Y .

2. Geometrically finite ends.The surfaceSm cuts off a geometrically finite end
Em if and only if ι∗(π1(Sm)) = Γm is quasi-Fuchsian. For each component
Ω ⊂ Ω(Γm),Xm = Ω/Γm ∼= int(Sm) andEm is asymptotic toXm ⊂ ∂M .

3. Geometrically infinite ends. Sm cuts off a geometrically infinite endEm if
and only if ι∗(π1(Sm)) = Γm is a totally degenerate group. Furthermore,
Ω(Γm)/Γm ∼= int(Sm). ut

WhenΓm is quasi-Fuchsian, we call the endEm quasi-Fuchsian.
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3 Pleated surfaces

Definition 3.1 A pleated surfaceis a triple (g,X,N) consisting of a surfaceX ∈
Teich(S), a hyperbolic 3-manifoldN and apleated mappingg : X → N :

1. g sends rectifiable arcs inX to rectifiable arcs inN of the same length,
2. g is incompressible, and
3. for eachx ∈ X , g maps some geodesic segment throughx isometrically.

Thepleating locusL(g) of the mapg, the set of pointsx ∈ X whereg fails to be a
local isometry, is a geodesic lamination onX (see [Th2, Prop. 5.1]).

Definition 3.2 Letf : S → N be an incompressible map ofS intoN . ThenPS(f),
the marked pleated surfaces homotopic tof , consists of pairs(g,X) of surfaces
(h : S → X) ∈ Teich(S) and pleated mappingsg : X → N , so thatg ◦ h ' f .

We givePS(f) the following topology: a sequence{(gn,Xn)} → (g,X) if
there are marking-preserving quasi-isometriesqn : X → Xn with quasi-isometry
constantsL(qn) → 1, such thatgn ◦ qn converges uniformly tog (cf. [Th1, 8.8.1]
[CEG, 5.2.14]). We say the incompressible mapf is internally non-parabolicif
f∗(γ) is hyperbolic wheneverγ ∈ π1(S) is non-peripheral. We will make use of the
following theorem of Thurston (see [CEG, Thm. 5.2.18]).

Theorem 3.3 (Thurston)LetK ⊂ N be a compact subset ofN , andf : S → N a
continuous incompressible map that is internally non-parabolic. Let{(gn,Xn)} be
a sequence of pleated surfaces inPS(f) whose imagesgn(Xn) all meetK. Then
{(gn,Xn)} has a convergent subsequence, orN has a finite coverÑ that fibers
over the circle.

Given a pleated surface(g,X) in PS(f), the pleating locusL(g) determines an
element inGL(S) via the implicit marking onX ∈ Teich(S). The map

L : PS(f) → GL(S)

that assigns to each pleated surface(g,X) its pleating locusL(g) ∈ GL(S) is
continuous (see [Th1, Prop. 8.10.4] [CEG, Lemma 5.3.2]).

Notice thatg maps leaves ofL(g) isometrically. More generally:

Definition 3.4 Let f : S → N be incompressible. A geodesic laminationλ ∈
GL(S), is realizablein N in the homotopy class off if there is a pleated surface
(g,X) ∈ PS(f) so thatg restricts to each leaf ofλ onX by a local isometry.

Via its implicit markingf : S → M , anyM ∈ AH(S) determines a subset
R(M) ⊂ ML(S) of measured laminations whose support is realizable inM the
homotopy class off . We sayµ ∈ R(M) is realizablein M as well. The setR(M)
is dense inML(S), and if f is internally non-parabolic definition thenR(M) is
open [CEG, 5.3.10].

Thurston proved [Bon1, Prop. 4.5] that there is a unique continuous function

length: Teich(S)×ML(S) → R
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whose restriction to Teich(S) × (R+ × S) satisfies lengthX(tγ) = t`X(γ∗) where
`X(.) denotes arclength onX andγ∗ is the geodesic representative ofγ ∈ S onX .

Whenµ ∈ R(M) is realizable by a pleated surface(g,X) in PS(f), we define
lengthM (µ) to be lengthX(µ). Given (M,µ) ∈ AH(S) ×ML(S) let RM(µ) be
the maximal sublaminationµ′ realizable inM . Let length: AH(S)×ML(S) → R

denote the function
(M,µ) → lengthM (RM(µ)).

Then length is the restriction of lengthto the setR ⊂ AH(S) ×ML(S) of pairs
(M,µ) for whichµ is realizable inM . In [Br2, Thm. 7.1] we prove:

Theorem 3.5 LENGTH CONTINUOUS. The functionlengthis continuous.

We will use following corollary in our applications:

Corollary 3.6 [Br2, Cor. 7.3]Let pairs {(Mn, µn)} ⊂ R, converge to the pair
(M,µ) in AH(S)×ML(S). If lengthMn

(µn) → 0 thenµ is non-realizable inM .

Tameness.Give the pared submanifold of a hyperbolic manifoldM the standard
decomposition into its relative compact coreM and endsEm (decomposition 2.12).

Definition 3.7 An endE of the pared submanifold issimply degenerateif there is a
sequence{cn} of non-peripheral simple closed curves in the boundary component
ι(S) of the relative compact core cutting offE whose geodesic representativesc∗n
exit every compact subset of the endE.

Simply degenerate ends are topologically products [Th1, Ch. 9] [Bon1]. The hyper-
bolic manifoldM is geometrically tameif all endsEm of its pared submanifold are
geometrically tame: i.e. either geometrically finite or simply degenerate.

Theorem 3.8 (Thurston, Bonahon)EachM ∈ AH(S) is geometrically tame;M
is homeomorphic toint(S)× R.

4 Iteration on a Bers slice

Fix (X,Y ) ∈ Teich(S)× Teich(S), and a mapping classϕ. Let

Qi = Q(ϕiX,Y ) ∈ AH(S)

denote the sequence obtained from iteration ofϕ on the Bers sliceBY , and letQϕ
denote any accumulation point of the sequence{Qi}∞i=1, with its implicit marking
f : S → Qϕ. By [Mc2, Thm 3.7] [Bers4, Lem. 1],ϕ is quasi-isometrically realized
onQϕ: the quasi-isometric distanced(ϕ(Qϕ), Qϕ) is bounded.

We say a sequence in a Bers sliceconverges up to marking-preserving quasi-
isometryto Q if for any accumulation pointQ∞ we haved(Q,Q∞) < ∞. Since
the Teichmüller distancedT (ϕi+kX,ϕiX) = dT (ϕkX,X) is independent ofi,
there are (marking-preserving) uniformly quasi-conformal conjugacies between the
uniformizing Kleinian groups forQi andQi+k for eachi. These conjugacies extend
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to equivariant uniform quasi-isometries betweeñQi and]Qi+k (see e.g. [Mc2, Thm.
2.5]) so the quasi-isometric distance

d(Q(ϕiX,Y ), Q(ϕi+kX,Y ))

is uniformly bounded independent ofi. Thus, lower semi-continuity ofd(., .) [Mc2,
Prop. 3.1] implies that for a convergent subsequence{Qij}∞j=1 → Qϕ and anyk, the
sequence{Qij+k}∞j=1 converges up to marking-preserving quasi-isometry toQϕ.

A choice of baseframeωϕ in the limit manifoldQϕ marked byf determines a
Kleinian groupf∗(π1(S)), with

Qϕ = H 3/f∗(π1(S)).

In this section we determine the full decomposition off∗(π1(S)) in the sense of
theorem 2.15. We show that this decomposition depends only onϕ.

Combinatorics. Let (Π(ϕ), SF(ϕ), SP(ϕ)) be the Nielsen-Thurston decomposi-
tion of S for ϕ (see theorem 2.6).

Decomposition 4.1Letϕ ∈ Mod(S), and letQϕ be an accumulation point inBY
of the iteration{Q(ϕiX,Y )}∞i=1 ⊂ BY . Then

1. the minimal reducing partitionΠ(ϕ) is the set of accidental parabolics forQϕ,
2. each component ofSP(ϕ) corresponds to a degenerate cover ofQϕ, and
3. each component ofSF(ϕ) corresponds to a quasi-Fuchsian cover ofQϕ.

This is a succinct summary of a series of assertions (proposition 4.2 through theo-
rem 4.7); a more detailed version is given in decomposition 4.8.

For reference, we choose pairwise disjoint representatives of the curves and sub-
surfaces of the Nielsen-Thurston decomposition(Π(ϕ), SF(ϕ), SP(ϕ)) which we
will denote by the same names.

By the above remarks, the set of all marking-preserving quasi-isometry classes
of accumulation points of{Qi} is identified with the set of marking-preserving
quasi-isometry classes of accumulation points of{Qki}. Since the above description
of the parabolics, quasi-Fuchsian covers, and degenerate covers ofQϕ is preserved
under marking-preserving quasi-isometries, it suffices to give the above description
for the accumulation points of{Qki} for anyk. To simplify the discussion, there-
fore, we pass to a stable iterate ofϕ that also stabilizes the isotopy classes of each
connected component of the subsurfacesSF(ϕ) andSP(ϕ).

Proposition 4.2 Letγ ∈ S be an accidental parabolic forQϕ. Then

I. i(γ, δ) = 0 for eachδ ∈ Π(ϕ), and
II. i(γ, η) = 0 for each essential isotopy classη of simple closed curves inSP(ϕ).

Proof. By theorem 2.15, the isotopy classes of accidental parabolics forQϕ them-
selves form a partitionΠP of S (see [Msk1, Lem. 2] or [Mar, Prop. 5.4]). Since
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ϕ is quasi-isometrically realized onQϕ (see [Mc2, Thm 3.7] [Bers4, Lem. 1]),ϕ
preserves isotopy classes of parabolics inQϕ. Thusϕ(ΠP ) = ΠP .

By irreducibility, a pseudo-Anosov mapping class preserves no non-peripheral
isotopy class of simple closed curves. Thereforeγ is not a non-peripheral isotopy
class of a curve in any componentS0 ⊂ SP(ϕ). Likewise, by a surgery argument
on S, if i(γ, ∂SP(ϕ)) is non-zero,ϕ cannot preserveγ. This proves (II) since if
i(γ, η) 6= 0 eitherγ is isotopic intoSP(ϕ) or i(γ, ∂SP(ϕ)) 6= 0.

Lastly, if δ ∈ Π(ϕ) is an isolated Dehn twisting curve forϕ, thenϕ cannot pre-
serveγ if i(γ, δ) 6= 0. By corollary 2.9, every isotopy class inΠ(ϕ) is represented
either by a Dehn-twisting curve forϕ or a component of∂SP(ϕ). It follows that
i(γ, η) is zero for eachη ∈ Π(ϕ), proving (I). ut

We now verify part (2) of decomposition 4.1.

Theorem 4.3 If S0 is a component ofSP(ϕ), thenf∗(π1(S0)) is totally degenerate.

Proof. Again, it suffices to prove the theorem for an iterate ofϕ that stabilizes the
isotopy class ofS0 by a pseudo-Anosov mapping classψ0 ∈ Mod(S0).

Lemma 4.4 Let ϕ ∈ Mod(S) have the property thatϕ(µ) = cµ, c > 1, µ ∈
ML(S). Then we havelimi→∞ lengthQi

(µ) = 0.

Proof.By a theorem of Bers, for eachγ ∈ S we have

lengthQ(X,Y )(γ) ≤ 2min{lengthX(γ), lengthY (γ)}
(see [Bers2, Thm. 3] [Mc1, Prop. 6.4]). Continuity of lengthX(.) onML(S) im-
plies the same inequality holds for lengths of measured laminations. Since we have
lengthϕX(ν) = lengthX(ϕ−1(ν)) for all ν ∈ML(S) andX ∈ Teich(S), we have

lengthQi
(µ) ≤ 2lengthϕi(X)(µ) = (2/ci)lengthX(µ).

Thus, lengthQi
(µ) tends to zero asi→∞. ut

Let ψ0 have unstable laminationµu ∈ ML(S0). Sinceψ0(µu) = cµu for some
c > 1, it follows from the above lemma and corollary 3.6 (or [Bon3, Thm. D]) that
µu is non-realizable inQϕ.

By corollary 2.9 and proposition 4.2, a connected componentT of the comple-
mentary subsurface determined up to isotopy byS −ΠP containsS0 up to isotopy.
The subgroupf∗(π1(T )) cannot be quasi-Fuchsian sinceµu lies in ML(T ) and
is non-realizable [CEG, Thm. 5.3.11] [Th1, Prop. 8.7.7]. Since the only elements
β ∈ π1(T ) of π1(T ) with parabolic imagef∗(β) are peripheral inT , it follows that
f∗(π1(T )) is totally degenerate by theorem 2.15.

We claim thatT is isotopic toS0. It suffices to show that each boundary compo-
nent ofS0 is parabolic inQϕ. Assume on the contrary thatγ ⊂ ∂S0 has geodesic
representativeγ∗ in Qϕ. Let weighted simple closed curves{tnζn} ⊂ ML(S0)
converging toµu determine geodesicsζ∗n in Qϕ.
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Pleated surfaces{(gn,Xn)} ⊂ PS(f |T ) realizingγ∪tnζn have imagesgn(Xn)
that all intersect the compact setγ∗. The mapf |T is internally non-parabolic, so by
theorem 3.3, continuous variance of the pleating locus, and openness of the realiz-
able laminations inML(T ) ([CEG, 5.3.2., 5.3.10]), we may pass to a convergent
subsequence converging to a limit pleated surface(g∞,X∞) that realizes the limit

lim
n→∞ γ ∪ tnζn = γ ∪ µu

in ML(T ), contradicting non-realizability ofµu. It follows thatγ is parabolic in
Qϕ, and so∂S0 consists of parabolics. Hence,S0 is isotopic toT , andf∗(π1(S0))
is totally degenerate.ut

The next two theorems verify part (1) of decomposition 4.1.

Theorem 4.5 Each isotopy class inΠ(ϕ) is an accidental parabolic.

Proof. Let δ ∈ Π(ϕ) − ∂SP(ϕ). By corollary 2.9,ϕ Dehn-twists aboutδ. Since
we have shown each isotopy class in∂SP(ϕ) is an accidental parabolic forQϕ, it
suffices to prove thatδ is an accidental parabolic.

Let η ∈ S be such thati(η, δ) 6= 0 and i(η,Π(ϕ) − δ) = 0. Consider the
sequence

tiϕ
i(η) where ti = 1/lengthX(ϕi(η))

of length-1 measured laminations onX . As ϕi(η) winds more and more around
δ, anyζ ∈ S has intersection numberi(ζ, tiϕi(η)) tending toi(ζ, δ)/lengthX(δ).
Thus, the sequence{tiϕi(η)} tends to the laminationδ/lengthX(δ) in ML(S) asi
tends to infinity.

Furthermore, we have

lengthQi
(tiϕi(η)) ≤ 2lengthϕiX(tiϕi(η)) = 2tilengthX(η)

which tends to 0 asi → ∞. Thus, by corollary 3.6,δ is non-realizable inQϕ, and
we conclude thatδ is parabolic inQϕ. (One may also argue as in [KT,§3]). ut
Theorem 4.6 The partitionΠP by accidental parabolics ofQϕ and the minimal
reducing partitionΠ(ϕ) for ϕ are identical.

Proof.By theorem 4.5, we haveΠ(ϕ) ⊂ ΠP . LetF0 be a component ofSF(ϕ). By
theorem 4.3 it suffices to prove that any accidental parabolic inF0 is peripheral.

Let γ ∈ S be an accidental parabolic inF0. By stability, we haveϕ(γ) = γ
andϕ(δ) = δ). If γ is not peripheral inF0, there is aδ ∈ S lying in F0 so that
i(δ, γ) 6= 0. Sinceγ is parabolic, and the accidental parabolics form a partition
of S, δ has positive lengthL in Qϕ. By continuity of the length ofδ onAH(S),
lengthQi

(δ) remains bounded below throughout the sequence.
Sinceϕ(δ) = δ, lengthϕiX(δ) is constant asi tends to infinity. By a theorem of

Sullivan, generalized by Epstein and Marden [Sul1, Prop. 1] [EM, Lem. 2.3.1] there
is a universalK so that we have

length∂hQi
(δ) ≤ Klength∂cQi

(δ)
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and likewise for∂hQi and∂cQi.
Let (δh)i and(δh)i denote the unique geodesic representatives in the free homo-

topy class ofδ on∂h(Qi) and∂h(Qi). Let (δ∗)i be the geodesic representative ofδ
in Qi. Since lengthϕiX(δ) is constant, both lengths

length∂h(Qi)
(δ) and length∂h(Qi)

(δ)

remain uniformly bounded above throughout the sequence. Construct pleated cylin-
dersCi in core(Qi) representing the free homotopy class ofδ so that

1. ∂Ci = (δh)i ∪ (δh)i, and
2. (δ∗)i ⊂ Ci

(cf. thepleated annulusconstruction of [Th4,§3]).
Since the lengths of(δh)i and(δh)i remain bounded, and the length of(δ∗)i re-

mains boundedbelow, the diameter of each cylinderCi remains uniformly bounded
by someK ′ > 0 throughout the sequence. Sincei(γ, δ) 6= 0, it follows from [Bon1,
Lem. 3.3] that the unique geodesic(γ∗)i in the free homotopy class ofγ inQi must
intersectCi for eachi. Since lengthQi

(γ) tends to0 asi tends to∞, (γ∗)i is arbitrar-
ily deep in the Margulis thin part(Qi)(0,ε3) whereε3 is the 3-dimensional Margulis
constant (see e.g. [BP, Thm. D.3.13]). Once the depth is greater thanK ′, bothCi
and(γ∗)i lie in the same component of(Qi)(0,ε3), which violates the thick-thin de-
composition sinceγ andδ do not commute inπ1(S). Thus,γ is peripheral inF0,
andΠP = Π(ϕ). ut

Finally, we verify part (3) of decomposition 4.1.

Theorem 4.7 If F0 is a component ofSF(ϕ), thenf∗(π1(F0)) is quasi-Fuchsian.

Proof.By the previous theorem, an isotopy classγ of essential simple closed curves
in F0 is parabolic if and only if it is peripheral inF0. Hence, the restrictionf∗|π1(F0)

determines an element ofAH(F0) with no accidental parabolics. By theorem 2.15,
f∗(π1(F0)) is either totally degenerate or quasi-Fuchsian.

Let δ be a non-peripheral isotopy class inF0; thenδ is non-parabolic inQϕ,
and thus lengthQϕ

(δ) = L > 0. Construct uniformly bounded diameter pleated
cylindersCi through(δ∗)i as in the proof of theorem 4.6.

If f∗(π1(F0)) were totally degenerate, tameness (theorem 3.8) implies there
would be a sequencecj ⊂ F0 of essential simple closed curves, non-peripheral
in F0 whose geodesic representatives leave every compact subset of core(Qϕ). Let
Q(F0) = H 3/f∗(π1(F0)), and let pleated surfaces(gj,Xj) ∈ PS(f |F0) realizecj
in Q(F0). Applying [Bus, Thm. 5.2.6] there is a uniform constantB so that given
X ∈ Teich(F0) we can always find amaximalpartition ofF0 all of whose elements
have length less thanB onX . Thus there are simple closed curvesdj ∈ S(F0) so
that lengthXj

(dj) < B for eachj, and eitherdj = cj or the geodesic representatives
of dj andcj onXj intersect. The curvesdj assume an infinite number of distinct
isotopy classes since otherwise some curvedj0 would have bounded length repre-
sentatives inQ(F0) with arbitrarily large separation, forcingdj0 to be parabolic.
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There are constantstj → 0 so thattjdj tends to a non-zero laminationν ∈
ML(S) after passing to a further subsequence. But lengthQ(F0)(tjdj) < tjB → 0,
soν is non-realizable inQ(F0), by corollary 3.6. We claim thati(δ, dj) > 0 for j
sufficiently large: otherwise, sincef |F0 is internally non-parabolic, a sequence of
pleated surfaces realizingδ anddj has a convergent subsequence inPS(f |F0) (by
theorem 3.3, as in the proof theorem 4.3) whose limit realizesν.

Thus geodesic representatives(dj)∗ of dj in anyQi intersect the cylinderCi
for j sufficiently large. Since lengthQi

(dj) tends to lengthQϕ
(dj) for eachj, given

a ∈ Z+ there is anNa so that for alli > Na, we have

lengthQi
(dj) < 2B

for all j ≤ a. But the diameter ofCi is uniformly bounded, and the number of
homotopically distinct simple closed curves of length bounded by2B that inter-
sect a set of bounded diameter in a hyperbolic 3-manifold is bounded. Therefore,
f∗(π1(F0)) is not totally degenerate, so it is quasi-Fuchsian.ut
Accumulation points. We assemble in one place the structural information about
Qϕ. Let Sm, m = 1, . . . , p denote connected components ofSP(ϕ) and letFn,
n = 1, . . . , q denote connected components ofSF(ϕ).

µu

core(Qϕ)Y

E1

X2

X1

SP(ϕ)

SF(ϕ)

Π(ϕ)

S1

F2

F1

Figure 5. The convex core of a limit Qϕ of iteration of ϕ on BY .

Decomposition 4.8Let ϕ be a stable mapping class. Let(f : S → Qϕ) be any
accumulation point of{Q(ϕiX,Y )} ⊂ BY with cuspidal thin partPϕ. Thenϕ
determines the following decomposition of the pared submanifoldQϕ − Pϕ.

1. Therelative compact coreι : (M,P) → (Qϕ − Pϕ, ∂Pϕ) has parabolic locus

P = ((∂S)× I) ∪
(
N (Π(ϕ))× {0}

)
and relative boundary

∂0M = (SP(ϕ)× {0}) ∪ (SF(ϕ)× {0}) ∪ (S × {1}).
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2. There is a geometrically finitefixed endEY ofQϕ−Pϕ asymptotic toY ⊆ ∂Qϕ
cut off byι(S × {1}) such thatι∗ (π1(S × {1})) = f∗ (π1(S)).

3. Each component ofι(SF(ϕ) × {0}) cuts off aquasi-Fuchsian endofQϕ − Pϕ
asymptotic to a surfaceXn ⊂ ∂Qϕ.

4. Each component ofι(SP(ϕ)×{0}) cuts off asimply degenerate endofQϕ−Pϕ.

5 Asymptotic geometry

In the case of iteration of a pseudo-Anosov mapping classψ on a Bers’ slice, sim-
ply degenerate ends arising in the limit areasymptotically isometricto a standard
model depending only onψ (see [Mc2,§3.5]). For a general stable mapping class
ϕ, we show that a similar analysis holds whereϕ induces a pseudo-Anosov map-
ping classψ on a subsurface. This gives a model for the quasi-isometry type of an
accumulation point of{Q(ϕiX,Y )}∞i=1 that depends only onϕ.

Three-manifolds fibering over the circle.Givenψ ∈ Mod(S), its mapping torus
is given by the identification

Tψ = S × I/(x, 0) ∼ (ψ(x), 1).

The manifoldTψ fibers over the circleS1 with monodromy mapψ by projection of
each surface(S, t) to t. Its orientation is given as the product of the orientation onS
with the orientation ofI. Thurston proved the following remarkable theorem [Th4].

Theorem 5.1 (Thurston)Givenψ ∈ Mod(S), the mapping torusTψ is hyperbolic
if and only ifψ is pseudo-Anosov.

The pseudo-Anosov mapping classψ canonically determines an elementMψ ∈
AH(S) by passing to the cover corresponding toι∗(π1(S)) whereι : S → Tψ is
the inclusion of a fiber.

In [Mc2], McMullen gives a construction of the hyperbolic structure onTψ based
on the iterationQ(ψiX,Y ) of ψ on a Bers’ sliceBY . A consequence is the conver-
gence of such iteration ([Mc2, Thm. 3.11]), which follows from a classification of
the new degenerate ends in any pair of algebraic accumulation points up to quasi-
isometry. In this section we relate this discussion to theinducedpseudo-Anosov
mapping classes of a general mapping class. Our main tool will be the following
theorem [Mc2, Thm. 3.17] which characterizes points inAH(S) that tend toMψ

under iteration ofψ onAH(S) in terms of the asymptotic geometry of their degen-
erate ends.

Theorem 5.2 (McMullen) LetQ belong toAH(S). Thenψn(Q) → Mψ if and
only if the negative end of the pared submanifold ofQ admits an asymptotic isometry
to that ofMψ compatible with markings.

In our setting, the theorem asserts the existence of a marking and orientation pre-
serving diffeomorphismh : E → Eψ from the negative end of the pared subman-
ifold of Q to that ofMψ so that for anyk and anyε > 0, there is a compact set
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K ⊂ E such thath is ε-close to an isometry in theCk topology onE − K. (cf.
[Mc2, pp. 55]). In particular,h is a quasi-isometry onE.

To distinguish the negative and positive ends of the pared submanifold ofM ∈
AH(S), we remark that by tameness (see theorem 3.8)M is homeomorphic to
int(S)×R. By requiring that this homeomorphism preserve orientation, we may la-
bel the ends of the pared submanifold ofM “positive” and “negative” corresponding
to the positive and negative ends ofR. In particular, whenS is closed andQ(X,Y )
thus has no cusps, the negative end ofQ(X,Y ) is asymptotic toX and the positive
end ofQ(X,Y ) is asymptotic toY .

Asymptotic geometry.For iteration of a stable mapping classϕ, decomposition 4.8
gives a correspondence between componentsS0 ⊂ SP(ϕ) of the pseudo-Anosov
subsurface forϕ, and simply degenerate endsE of the accumulation point(f : S →
Qϕ) ∈ BY of iteration ofϕ onBY . Passing to the least iterate ofϕ that leaves each
component ofSP(ϕ) invariant, consider the action of the pseudo-Anosov mapping
classψ ∈ Mod(S0) induced byϕ on S0. Let µs, µu ∈ ML(S0) be the stable
and unstable laminations forψ. By decomposition 4.8 the subgroupf∗(π1(S0)) of
f∗(π1(S)) is totally degenerate, andµu is non-realizable inQϕ.

Let E0 be the degenerate end ofQϕ − Pϕ cut off by the surfaceι(S0 × {0})
as in decomposition 4.8. LetTψ−1 denote the mapping torus forψ−1 andMψ−1 ∈
AH(S0) its cover corresponding to the fiber. LetPψ−1 denote the cuspidal thin part
Mψ−1. Then the negative end ofMψ−1 − Pψ−1 gives a model forE0.

Theorem 5.3 The endE0 of Qϕ − Pϕ is asymptotically isometric to the negative
end ofMψ−1 − Pψ−1 .

Proof.Consider the coverM = H 3/f∗(π1(S0)) corresponding tof∗(π1(S0)). The
marking onQϕ naturally determines a marking onM , which in turn determines an
element ofAH(S0) sincef∗(β) is parabolic for each boundary componentβ in ∂S0.
Denote byM0 = (f0 : S0 → M) this cover marked by a homotopy equivalencef0
such that(f0)∗ = f∗|π1(S0), with its cuspidal thin partP0.

The degenerate endE0 of Qϕ − Pϕ lifts isometrically to the negative end of the
pared submanifoldM0 − P0 of M0 (see figure 6). By theorem 5.2, then, it suffices

Pϕ

E0 Y Tω1 ω0ω2

Qϕ − Pϕ M0 − P0

P0

Figure 6. The cover corresponding to the end E0.

to show thatM0 converges toMψ−1 under iteration ofψ−1 onAH(S0).
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Theorem 5.4 The sequence{ψ−n(M0)} converges toMψ−1 in AH(S0).

Before proving theorem 5.4, we discuss a central tool in its proof.

Compactness.We must first show that the sequenceψ−n(M0) = Mn ranges in a
compact subset ofAH(S0). The case whenϕ = ψ−1 is discussed in [Mc2,§3]:
by Thurston’s double limit theorem [Th4, Thm. 4.1] (see also [Otal1, Thm. 5.0.1],
[Can1, Thm. 6.1]) the quasi-Fuchsian manifoldsQ(ψiX,ψ−jY ), i, j > 0, range in
a precompact subset ofAH(S). Since eachMn is a limit of Q(ψi−nX,ψ−nY ) as
i tends to∞, Mn lies in the compact closureQ(ψiX,ψ−jY ) ⊂ AH(S), i, j > 0.
Thus the sequence{Mn} converges up to subsequence.

Our situation differs slightly in that while eachMn covers a limit of quasi-
Fuchsian groups, it is not itself given as such a limit. We resort to the following
internal formulation of the double limit theorem ([Th4, Thm. 6.3]): a pair of mea-
sured laminationsµ, ν ∈ML(S) bindsS if for everyγ ∈ S we have

i(µ, γ) + i(ν, γ) > 0.

Theorem 5.5 (Thurston)If {Mn} is a sequence inAH(S) of marked hyperbolic
3-manifolds andµn → µ andνn → ν are sequences of measured laminations such
that

lengthMn
(µn) and lengthMn

(νn)

remain bounded, then ifµ andν bind the surfaceS, there is a subsequence of{Mn}
that converges.

Corollary 5.6 COMPACTNESS. The sequenceMn = ψ−n(M0) ranges in a com-
pact subset ofAH(S0).

Proof (of corollary 5.6).We exhibit sequences{µn} and{νn} in ML(S0) tending
to µu andµs whose lengths inMn remain bounded. This suffices, sinceµu andµs

bind the surfaceS0.
Let ∂M0 = T ∈ Teich(S0). Then we have∂Mn = ψ−nT . As in lemma 4.4

lengthψ−nT (µs) =
1
cn

lengthT (µs),

for somec > 1. SinceT is incompressible, continuity of length together with [EM,
Lem. 2.3.1] (cf. [Sul1, Prop. 1]) guarantees that there is a universal constantK such
that

Klengthψ−nT (µs) ≥ lengthMn
(µs).

It follows that lengthMn
(µs) tends to zero asn tends to infinity.

Note thatM0, and hence eachMn, has no accidental parabolics. Let{tiζi} be a
sequence of weighted simple closed curves tending toµu. Sinceµu is non-realizable
in M0, ζ∗i exits every compact subset of core(M0). Otherwise, a subsequence of
pleated surfaces realizingζi would converge to a pleated surface realizingµu by the-
orem 3.3, as in the proof of theorem 4.3. Then by continuity of length, theorem 3.5,
{lengthM0

(tiζi)} tends to zero asi tends to infinity (see also [Otal1, Thm. 6.2.11],
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[Th1, Prop. 9.3.4]). Sinceµu is preserved byψ up to scale, it is non-realizable in
everyMn. Thus, for any fixed constantC > 0 and anyn there is anin so that
tinζin has lengthMn

(tinζin) < C. The sequencesµn = tinζin andνn ≡ µs have
bounded length inMn, and converge to laminationsµu andµs that bindS. Thus,
by theorem 5.5,{Mn} converges after passing to a subsequence.ut
Convergence to the fiber.We now prove theorem 5.4. The argument mirrors the
construction of the hyperbolic structure on the mapping torusTψ, which appears in
[Mc2, §3.4], [Otal1, Ch. 6], and in [Th4].

Proof (of theorem 5.4).Pass to a subsequence of{Mn} converging to a limitM∞ ∈
AH(S0). Choose convergent lifts(Mn, ωn) toAHω(S0) converging to(M∞, ω∞).
Such lifts determine representationsρn : π1(S0) → PSL2(C ) converging on gener-
ators to a limitρ∞. Note thatMn are different markings of the same manifoldM0,
and theωn are frames inM0.

We claim the baseframesωn travel arbitrarily deeply into the convex core of
M0. Let η be a non-peripheral element ofπ1(S0). By algebraic convergence, the
translation distance ofρn(η) at ωn is uniformly bounded byL > 0. This means
there is a path(η)n ⊂ Mn based atωn representingη of length bounded byL.
But the paths(η)n representdistincthomotopy classesψn(η) in the manifoldM0.
Hence,ωn leaves every compact subsetK ⊂ M0 as there is a uniform boundJK,L
to the number of closed curves in distinct homotopy classes with length at mostL
in K. By algebraic convergence,ωn lies in (M0)(r,R) for somer > 0 andR < ∞,
so it follows that the baseframesωn travel arbitrarily deeply into the convex core.
Thus, the limit setsΛ(ρn(π1(S))) converge toĈ in the Hausdorff topology (see
[Mc2, Prop. 2.3]).

SinceM0 lies in AH(S), it is geometrically tame, and we have inj(x) < R
for eachx ∈ core(M0) (see [Can2, Thm. 6.2] [Bon1]). We pass to a geometrically
convergent subsequence of{(Mn, ωn)} converging geometrically to a limit(N,ω).
Let H 3 uniformize the geometric limit(N,ω) as the quotient(H 3 , ω̃)/ΓG by the
Kleinian groupΓG. By compactness in the geometric topology and continuous vari-
ance of the limit sets [Mc2, Prop. 2.4] the injectivity radius ofN is bounded byR
throughout core(N), and the limit setΛ(ΓG) is all of Ĉ .

The quasi-isometric realization ofϕ−1 onQϕ lifts to a quasi-isometryΘ : M0 →
M0 in the homotopy class ofψ−1. For eachn, there is a lift

Θ̃n : M̃n → M̃n

whose uniformly quasi-conformal extension (by [Mc2, Thm. 2.5])Θn : Ĉ → Ĉ

induces the precomposition byψ−1∗ of ρn: in other words, for eachn we have

Θn · ρn(g) ·Θn−1 = ρn(ψ−1
∗ (g)).

Choose three non-peripheral non-commuting elementsηκ ∈ π1(S0),κ = 1, 2, 3.
The attracting fixed points ofρn(ηκ) in Ĉ are distinct for eachn, and converge to the
distinct attracting (or possibly parabolic) fixed points ofρ∞(ηκ), κ = 1, 2, 3, since
ρ∞ is discrete and faithful. The uniformly quasi-conformal conjugaciesΘn map the
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triple of attracting fixed points ofρn(ηκ) to the triple of attracting fixed points of
ρn(ψ−1∗ (ηκ)), so it follows that they have a quasi-conformal limitΘ∞ after passing
to a subsequence [Gard,§1.8, Lem. 6].

The limitΘ∞ has the property that

Θ∞ · ρ∞(g) ·Θ∞−1 = ρ∞(ψ−1
∗ (g)).

Moreover, any elementγ ∈ ΓG is the limit of a sequence{ρn(gn)}∞n=1 for some
sequence{gn}∞n=1 ⊂ π1(S0). Since we have

Θn · ρn(gn) ·Θn−1 = ρn(ψ−1
∗ (gn))

it follows thatρn(ψ−1∗ (gn)) also converges in PSL2(C ) with limit γ′ ∈ ΓG. Thus

Θ∞ · ΓG ·Θ∞−1 = ΓG.

It follows that there is a quasi-isometryβ : N → N covered by a quasi-isometry
β̃ : M∞ →M∞ in the homotopy class ofψ−1: i.e. so that̃β ◦ f∞ ' f∞ ◦ ψ−1, by
extendingΘ∞ to H 3 .

SinceΛ(ΓG) = Ĉ , and inj(x) < R for eachx ∈ core(N), the groupΓG is
quasi-conformally rigid (see [Mc2, Thm. 2.9], [Sul2]). HenceΘ∞ is conformal. The
induced isometryξ : N → N lifts to an isometryα : M∞ → M∞ in the homotopy
class ofψ−1 so the quotientM∞/〈α〉 is a hyperbolic manifold homotopy equivalent
to Tψ−1 . By a theorem of Stallings [St],M∞/〈α〉 ∼= Tψ−1 andM∞ = Mψ−1. ut
Continuation of the proof of theorem 5.3. By theorem 5.4, the sequence{ψ−n(M0)}
converges toMψ−1 in AH(S0), so we are finished.ut
Algebraic limits. Having analyzed simply degenerate ends arising from iteration,
we are ready to prove the following theorem.

Theorem 5.7 QUASI-ISOMETRIC ALGEBRAIC LIMITS. Let ϕ be an element of
Mod(S), and letQϕ andQ′

ϕ be any pair of accumulation points of the iteration
{Q(ϕiX,Y )}∞i=1 ⊂ BY . Then there is a quasi-isometryΘ : Qϕ → Q′

ϕ compatible
with markings.

Proof. Whenϕ has finite orders, the quasi-Fuchsian manifolds{Q(ϕiX,Y )}si=1
are mutually quasi-isometric in a manner compatible with markings.

Letϕ have infinite order. LetPϕ andP ′
ϕ be the cuspidal thin parts ofQϕ andQ′

ϕ

respectively. By decomposition 4.8,Qϕ − Pϕ andQ′
ϕ − P ′

ϕ admit relative compact
cores with a common model(M,P) up to diffeomorphism given byM ∼= S × I

andP = N (Π(ϕ))× {0} ∪ ((∂S)× I). Choose inclusions

ι : (M,P) → (Qϕ − Pϕ, ∂Pϕ) and ι′ : (M,P) → (Q′
ϕ − P ′

ϕ, ∂P
′
ϕ).

WhenSP(ϕ) 6= ?, there is a correspondence between simply degenerate endsEm
andE′

m,m = 1, . . . , p, ofQϕ−Pϕ andQ′
ϕ−P ′

ϕ each cut off byι(Sm×{0}) and
ι′(Sm × {0}) for each componentSm ⊂ SP(ϕ).
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After passing to an iterate ofϕ that stabilizes each componentSm, let ψm ∈
Mod(Sm) be the pseudo-Anosov mapping class induced onSm. By theorem 5.4,
Em andE′

m are each asymptotically isometric to the negative end of the pared
submanifold ofMψ−1

m
in a manner compatible with marking.

SinceQϕ andQ′
ϕ have relative compact cores with the same topology and

parabolic locus, and their corresponding simply degenerate ends admit marking-
preserving quasi-isometries, by theorem 2.13 there is a marking-preserving quasi-
isometry

Θ : Qϕ → Q′
ϕ.

ut

6 Geometric limits and convergence

In this section we show that iteration of a stable mapping class on a Bers slice
converges algebraically and geometrically.

By analogy with the finite order case, we go on to validate the hypothesis of
stability by showing that whenever the complex dimension of Teich(S) is greater
than one (cf. corollary 6.11) there existsϕ ∈ Mod(S) andX ∈ Teich(S) so that the
iteration{Q(ϕiX,Y )}∞i=1 has more than one algebraic accumulation point.

Convergence theorems.Our main goal in this section is to prove:

Theorem 6.1 STABLE ITERATION CONVERGES. Let ϕ ∈ Mod(S) be a stable
mapping class. Then the sequence{Q(ϕiX,Y )}∞i=1 converges algebraically to a
limit Qϕ and geometrically to a limitN covered byQϕ.

The theorem is established for pseudo-Anosov mapping classes in [Mc2, Thm.
3.11], [CT,§7]. The algebraic and geometric limits agree, and they do not depend
onX . We will first establish the following lemma.

Lemma 6.2 Let ϕ ∈ Mod(S) be a mapping class. LetQϕ andQ′
ϕ be any pair

of accumulation points of the sequence{Q(ϕiX,Y )}∞i=1 in BY . Let N andN ′
be geometric accumulation points covered byQϕ andQ′

ϕ after passing to further
subsequences.

Then there is a quasi-isometryΘ : N → N ′ that is covered by a quasi-isometry
Θ̃ : Qϕ → Q′

ϕ compatible with markings.

As in the finite order case, we have the following corollary of theorem 6.1.

Corollary 6.3 For any mapping classϕ ∈ Mod(S), the number of algebraic and
geometric accumulation points of the sequence{Q(ϕiX,Y )} is bounded by the
stable powers for ϕ.

(See definition 2.8; recall that the stable power is bounded in terms ofS).

Outline of the proof.We outline our approach to theorem 6.1. By a re-marking
trick, we may build any geometric limitN directly by a gluing (combination) of al-
gebraic limitsQϕ ofQi = Q(ϕiX,Y ) andQϕ−1 of ϕ−i(Qi) = Q(X,ϕ−iY ) along
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their common quasi-Fuchsian ends. This is justified by a generalgluing lemma
(lemma 6.5) which describes a process by which covers of the geometric limitN of
a sequenceMi ∈ AH(S) may be built from algebraic limits of different markings
fi : S → Mi andgi : S → Mi of the manifoldsMi. After gluingQϕ andQϕ−1 we
have a manifold that coversN , and by consideration of the domains of discontinuity
(proposition 6.6 and corollary 6.7) we find the covering is a homeomorphism.4

Quasi-isometries between pairsN andN ′ of geometric accumulation points are
constructed by gluing together marking-preserving quasi-isometries between pairs
of algebraic accumulation points of{Qi} and{ϕ−i(Qi)}, proving lemma 6.2. Con-
sideration of the conformal boundary shows∂N = X t Y = ∂N ′, so by rigidity
these quasi-isometries are homotopic to isometries. This proves algebraic and geo-
metric convergence (theorem 6.1).

We briefly introduce new terminology to discuss gluing hyperbolic manifolds,
prove the gluing lemma, and go on to prove lemma 6.2 from which theorem 6.1
follows. To discuss the gluing process, we allow the complete oriented hyperbolic
3-manifoldM to be disconnected.

The quasi-isometric deformation space.A complete oriented hyperbolic 3-manifold
M has aquasi-isometric deformation spaceDef(M) consisting of pairs(h,N) of
hyperbolic 3-manifoldsN marked by quasi-isometries

h : M → N

up to isometries preserving orientation and marking. The quasi-isometric distance
d(., .), defined analogously to that onAH(S), determines the topology on Def(M).
When∂M is incompressible, work of Ahlfors, Bers, Mostow, Prasad, Kra, Maskit
and Sullivan culminates in a fundamental parametrization for Def(M); in particular
by a theorem of Sullivan, provided eitherπ1(M) is finitely generated ([Sul2, Thm.
V.]), or the injectivity radius is bounded on core(M) ([Mc2, Thm. 2.9]), we have

Def(M) = Teich(∂M)

via the natural projection (e.g. [Kra, Thm. 14]; see also [Th2, Thm. 1.3]).

The skinning map.LetM be a complete oriented hyperbolic 3-manifold, with con-
formal boundary∂M . AssumeM is not itself quasi-Fuchsian, and let∂qfM ⊂ ∂M
denote the subset consisting of componentsW ⊂ ∂M whose corresponding covers
are quasi-Fuchsian. Theskinning map

σ : Teich(∂qfM) → Teich(∂qfM)

is defined by passing to each quasi-Fuchsian cover and recording the structure of the
new conformal boundary component. While the natural coveringQ(W,σ(W )) →
M , extends to an embedding onW , the surfaceσ(W ) does not embed (unless
M = Q(W,σ(W ))), and its structure depends on the structures on all surfaces in
∂M simultaneously.

4 At this point, the homeomorphism type ofN (theorem 1) can be deduced, but we defer this to§7.
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The gluing problem.LetG ⊂ ∂qfM be a portion of the quasi-Fuchsian conformal
boundary forM so that for each componentM0 of M , we haveG∩ ∂M0 6= ?. An
orientation reversing fixed-point-free involutionτ : G→ G determines an isometry
τ : Teich(G) → Teich(G). Thenτ determines agluing problemfor the deformation
space Def(M) of M , which seeks a fixed point for the composition

τ ◦ σ|G : Teich(G) → Teich(G)

(cf. [Mc1, §3.3] [Mor, §9] [Otal2]). Once found, a fixed pointx for τ ◦ σ|G, solves
the gluing problem as follows: if

pτ : Def(M) → Teich(G)

is the natural projection, then any manifoldM ′ ∈ {p−1
τ (x)} has quasi-Fuchsian

ends corresponding toG that are isometrically compatible with the gluing data
τ . Then thegluing M ′/τ of M ′ by τ is the complete (connected) hyperbolic 3-
manifold obtained by isometrically joining together the quasi-Fuchsian ends that
correspond under the involutionτ ;M ′ is called asolutionto the gluing problem for
the gluing dataτ .

The existence and standard properties ofM ′/τ follow from the Klein-Maskit
combination theorems:for example, [AC, Thms. 8.1, 8.2] (we refer the reader to
[Msk2, Thms. VII.C.1, VII.E.5] for more detailed versions). WhileM ′/τ is not
literally a gluing of the Kleinian manifoldM ′ along its conformal boundary, the
complete hyperbolic manifoldM ′/τ is realized as an isometric gluing along em-
bedded surfaces truncating the quasi-Fuchsian ends corresponding toG.

Compatible covering spaces.Let M be a solution to a gluing problemτ : G →
G, for G ⊂ ∂qfM . For each componentW ⊂ G, the quasi-Fuchsian manifold
Q(W,σ(W )) determines a covering space ofM . ThatM is a solution implies that
the two covering spacesQ(W,σ(W )) andQ(τ ◦ σ(W ), σ(W )) are isometrically
identified as the quasi-Fuchsian manifoldQ, which coversM by two distinct cov-
erings

q1 : Q→M and q2 : Q→M.

The covering mapq1 extends to an embeddingq1 : W ↪→ ∂M and the covering map
q2 extends to an embeddingq2 : σ(W ) ↪→ ∂M .

Whenτ identifies more than one pair of surfaces, we allowQ to be a discon-
nected union of quasi-Fuchsian covering spaces ofM (one component for each pair
of surfaces identified byτ ) and letq1 : Q→M andq2 : Q→M be covering maps
defined as above on each component ofQ.

A choice of baseframeω ∈ Q, naturally identifies a (quasi-Fuchsian) Kleinian
groupΓ (Q) uniformizing the component ofQ containingω, and the imagesq1(ω)
andq2(ω) identify Kleinian groupsΓ1(M) andΓ2(M) uniformizing the connected
component ofM containingqκ(ω) so that the standard frame at the origin inH 3

lies overqκ(ω), κ = 1, 2.
The groupsΓ (Q) < Γ1(M), Γ2(M) satisfy the hypotheses of the first combi-

nation theorem ([AC, Thm. 8.1]) ifq1(ω) andq2(ω) lie in different components of
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M

M/τ

Q

M/τ = H
3/〈Γ1(M), Γ2(M)〉

M
τ

σ(W ) W

σ(W )W

Figure 7. Isometrically gluing hyperbolic manifolds.

M and the second combination theorem ([AC, Thm. 8.2]) if they lie in the same
component. The gluingM/τ is thenH 3/Γc, whereΓc is the result of successive
combinationsandHNN-extensionsof Γ1(M) andΓ2(M) along the quasi-Fuchsian
subgroupsΓ (Q) determined by choosing a baseframeω in each component ofQ
(see also [Br3, App. B], [Mc1,§3.3]).

Using the combination theorems, the following facts about gluings are easily
verified. LetM solve the gluing problem forτ . Then we have:

GI If G ⊂ ∂qfM is the domain forτ , then∂(M/τ ) = ∂M −G.

GII Each component ofM coversM/τ by a local isometry.

GIII If N is another hyperbolic 3-manifold, and there are locally isometric covering
maps

Q
q1
q2

// M
p1
p2

// N

that arecompatiblewith τ : i.e.p1 ◦q1 = p2 ◦q2 andτ ◦q1|W is isotopic toq2 ◦σ|W ,
then the gluingM/τ coversN by a local isometry.

The following theorem concerning gluings seems to be well-known:

Theorem 6.4 LetM be a solution to the gluing problem determined byτ , and let
M ′ ∈ Def(M) be any other solution. Then there is a quasi-isometry

Θ : M/τ →M ′/τ

so that any liftΘ̃ : M →M ′ is marking-preserving.

Proof (sketch).We sketch a proof of theorem 6.4 (see also [Br3, App. B] for more
detail). LetF be the (in general disconnected) surface with one component for each
pair of surfaces to be identified by the gluing mapτ (with the previous notationF =
G/τ ). By work of Maskit [Msk2] and Anderson-Canary [AC, Lem. 3.1, 6.3] there
is a properly embeddedgluing surfaces : F →M/τ so thats is incompressible on
each componentFn of F and so that,(s|Fn)∗(π1(Fn)) = (p1 ◦ q1|Qn)∗(π1(Qn))
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whereQn ⊂ Q is the quasi-Fuchsian component ofQ corresponding toFn (the im-
ages(F ) is the quotient of asystem of spanning disks, one for each quasi-Fuchsian
subgroup involved in the combination). Moreover,s may be taken to be totally
geodesic on neighborhoods of the ends ofF .

The maps lifts to a maps̃ : F → Q whose image separatesQ into two disjoint
setsE1 andE2 so thatq1 is an embedding onE1 andq2 is an embedding onE2 (cf.
figure 7). Likewise,p1 is an embedding onq1(E2), p2 is an embedding onq2(E1),
andM/τ is the isometric identification

M/τ = (M − q1(E1)) ∪τ̂ (M − q2(E2))

whereτ̂ : q1(s̃(F )) → q2(s̃(F )) is defined bŷτ (q1(s̃(x))) = q2(s̃(x)).
Let s′ : F → M ′/τ be the gluing surface forM ′/τ with lift s̃′ : F → Q′ and

let q′1 : Q′ → M ′ andq′2 : Q′ → M ′ be the corresponding covering maps. LetΘ0

be the natural marking-preserving quasi-isometryΘ0 : M → M ′; perturbΘ0 so it
restricts to a quasi-isometry of pared submanifolds ofM andM ′.

There is anε so that the cuspidal partsPε and P ′
ε of M(0,ε) andM ′

(0,ε) in-
tersects(F ) and s′(F ) in totally geodesic cylinders asymptotic to cusps. Taking
M − Pε andM ′ − P ′

ε as our pared submanifolds insures that the intersections of
q1(s̃(F ))t q2(s̃(F )) andq′1(s̃

′(F ))t q′2(s̃′(F )) with the pared submanifolds ofM
andM ′ are surfaces cutting off corresponding quasi-Fuchsian ends. After precom-
position ofs′ by an isotopy, we may adjustΘ0 by a homotopy in a compact neigh-
borhood ofs(F ) to obtain a quasi-isometryΘ′

0 so thatΘ′
0(q1(s̃(x))) = q′1(s̃′(x))

andΘ′
0(q2(s̃(x))) = q′2(s̃

′(x)).
It follows thatΘ′

0 respects the gluingsM/τ andM ′/τ : Θ′
0 determines a quasi-

isometryΘ : M/τ → M ′/τ of the gluings, and by construction any lift̃Θ : M →
M ′ of Θ toM is marking preserving. ut
The gluing lemma.The following lemma should be a useful tool for studying al-
gebraic and geometric limits of general sequences inAH(S).

Lemma 6.5 THE GLUING LEMMA . Let T ⊂ S be a connected, essential, proper
subsurface of negative Euler characteristic. Let

(fi : S →Mi) → (f : S →M) and (gi : S →Mi) → (g : S →M ′)

be convergent sequences inAH(S) such that(fi)∗|π1(T ) is conjugate to(gi)∗|π1(T )

in π1(Mi) for eachi. Then any geometric limitN ofMi covered byp : M → N is
also covered byp′ : M ′ → N , so thatp∗ ◦ f∗|π1(T ) = p′∗ ◦ g∗|π1(T ) up to conjugacy.

If, moreover,

a) the limitf∗(π1(T )) is quasi-Fuchsian, and
b) Q(W,Z) = H 3/f∗(π1(T )) coversM andM ′ by covering maps that extend to

embedW in ∂M andZ in ∂M ′,

thenM tM ′ solves the natural gluing problem with dataτ : W 
 Z such that
τ∗ = idπ1(T ), and the coversQ(W,Z) → M → N andQ(W,Z) → M ′ → N are
compatible withτ .
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Proof.We first verify that we may pass to a subsequence to extract a geometric limit
N that is covered by bothM andM ′. Recall from the proof of proposition 2.3 that
the geometric limit covered byM is obtained via choosing baseframesωi ∈ Mi

that determine convergent lifts toAHω(S): the based manifolds(Mi, ωi) determine
Kleinian groupsΓi and the markingsfi : S → (Mi, ωi) determine an algebraically
convergent sequence of representationsρi : π1(S) → PSL2(C ) (with imageΓi) that
converge to a limitρ∞ = f∗ on eachα ∈ π1(S).

Since(fi)∗|π1(T ) is conjugate to(gi)∗|π1(T ) andρi(π1(T )) is non-elementary,
the markingsgi : S → (Mi, ωi) also determine algebraically convergent representa-
tions%i : π1(S) → PSL2(C ) (also with imageΓi) tending to%∞ = g∗. As in propo-
sition 2.3, we may pass to a geometrically convergent subsequence of(Mi, ωi) con-
verging to a hyperbolic manifold(N,ω). The geometric limitN is naturally covered
byM andM ′. Let

p : M → N and p′ : M ′ → N

denote the locally isometric covering projections.
We verify that the imagesp∗ ◦ f∗(π1(T )) andp′∗ ◦ g∗(π1(T )) are conjugate in

π1(N). LetΓG be the Kleinian uniformization of(N,ω).
Choose any three non-peripheral non-commuting elementsηκ, κ = 1, 2, 3, in

π1(T ). Then there are elementsbi ∈ π1(Mi) such that

(fi)∗(ηκ) = bi ◦ (gi)∗(ηκ) ◦ b−1
i

for eachi and eachκ. The elementsρi(ηκ) of PSL2(C ) are conjugate byβi ∈
Γi to %i(ηκ), for κ = 1, 2, 3. Sinceρi and%i converge on eachηκ, the attracting
(or parabolic) fixed points ofρi(ηκ) are mapped by eachβi to the attracting (or
parabolic) fixed points for%i(ηκ). The fixed points ofρi(ηκ) converge inĈ to the
distinct fixed points ofρ∞(ηκ) and likewise for the fixed points of%i(ηκ), so the
elementsβi converge to an elementβ that conjugates the fixed points ofρ∞(ηκ)
to the fixed points of%∞(ηκ). Sinceβi ∈ Γi, it follows thatβ is contained in the
geometric limitΓG. Hence,p∗ ◦ f∗|π1(T ) andp′∗ ◦ g∗|π1(T ) are conjugate inπ1(N).

Assuminga) andb) hold in addition, we may pass to the cover corresponding
to p∗ ◦ f∗(π1(T )) to obtain the quasi-Fuchsian manifoldQ(W,Z) ∈ QF (T ). By
hypothesisb), the locally isometric covering mapQ(W,Z) → N , factors through
coverings toM andM ′ that embedW in ∂M andZ in ∂M ′. Evidently,M tM ′
solves the gluing problem determined by the natural gluing involution

τ : W 
 Z

satisfyingτ∗ = idπ1(T ). Moreover, the locally isometric coverings

Q(W,Z) →M → N and Q(W,Z) →M ′ → N

are compatible withτ , and thus, the gluing(M tM ′)/τ coversN by a local isom-
etry. ut
Carathéodory convergence.We wish to apply the gluing lemma (lemma 6.5) to the
setting of iteration to prove lemma 6.2. To control the ways the algebraic limit can
cover the geometric limit, we recall certain facts about their conformal boundaries.
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Combining continuous variance of the limit sets in the geometric topology [KT,
Cor. 2.2] with theCarath́eodory convergence theorem[Du, Thm. 3.1], Kerckhoff
and Thurston analyze algebraic and geometric convergence in a Bers slice in terms
of the sphere at infinity (see [KT, Prop. 2.3]): in the Carath´eodory topology onopen
subsets of̂C , a sequence of open subsetsΩi ⊂ Ĉ converges to an open subset
Ω ⊂ Ĉ if and only if the complements(Ĉ − Ωi) converge to(Ĉ − Ω) in the
Hausdorff topology (see [JM, 4.1] [KT, Prop. 2.3]).

Proposition 6.6 CARATHÉODORY CONVERGENCE. Let Qi ∈ BY converge al-
gebraically toQ∞ and geometrically toN covered byQ∞. Let convergent lifts
(Qi, ωi) → (Q∞, ω∞) toAHω(S) with geometric limit(N,ω) determine Kleinian
groupsΓi, Γ∞ andΓG respectively. LetΩ+(Γi) ⊂ Ω(Γi) coverY ⊂ ∂Qi and let
Ω−(Γi) = Ω(Γi)−Ω+(Γi). Then

1. the limit setsΛ(Γi) converge toΛ(ΓG) in the Hausdorff topology,
2. after passing to a subsequence so thatΩ+(Γij ) → Ω+ andΩ−(Γij) → Ω−, we

haveΩ+ ∩Ω− = ?,Ω(ΓG) = Ω+ tΩ−, andΩ+ andΩ− areΓG-invariant,
3. the componentΩY ⊂ Ω(Γ∞) coveringY ⊂ ∂Q∞ embeds inΩ+ ⊂ Ω(ΓG).

Proof.Assertion (1) is proven in [KT, Cor. 2.2] for quasi-Fuchsian groups and fol-
lows from [Mc2, Prop. 2.4] and [Can2, Thm. 6.2] in general.

For assertion (2), ifx lies inΩ+ ∩ Ω−, thenx lies inΩ+(Γij ) ∩ Ω−(Γij) for
all ij � 0, which contradicts the fact thatΩ+(Γi) ∩ Ω+(Γi) = ? for all i. Thus
Ω+ ∩ Ω− = ?. If x lies inΩ(ΓG), thenx has an open neighborhood that lies in
infinitely manyΩ+(Γij ) or infinitely manyΩ−(Γij) sox lies inΩ+tΩ−. Likewise,
if x lies inΩ+ thenx lies inΩ+(Γij) ⊂ Ω(Γij) for all ij � 0, sox lies inΩ(ΓG),
and similarly forx ∈ Ω−. ThusΩG = Ω+ t Ω−. If y lies in Ω+ then it has a
neighborhood contained inΩ+(Γij) for all ij � 0. The same holds forx ∈ Ω−,
providedΩ− is non-empty. If there were an elementγ ∈ ΓG for whichγ(y) = x it
would be the limit of elementsγij ∈ Γij with the property thatγij (yij) = x with
yij → y contradicting theΓij -invariance ofΩ+(Γij ) andΩ−(Γij). ThusΩ+ and
Ω− are eachΓG-invariant and assertion (2) follows.

For assertion (3), since theQi range inBY , ΩY is the imagew∞(∆) of the
unit disk∆ under the locally uniform limitw∞ of a sequence of univalent maps
wi : ∆ → Ĉ with wi(∆) = Ω+(Γi) (see [Bers2], [KT,§2]). By the Carath´eodory
convergence theorem [Du, Thm. 3.1],w∞(∆) is a component ofΩ+. ut

This proposition has the following consequence in the quotients (cf. [JM]).

Corollary 6.7 LetQi → Q∞ be a convergent sequence inBY . Then for any geo-
metric limitN covered byQ∞, the covering mapπ : Q∞ → N extends to a holo-
morphic embedding onY ⊂ ∂Q∞.

Proof. By proposition 6.6, the covering mapπ extends to the finite area Riemann
surfaceY by a locally isometric covering mapπ : Y → Z for someZ ⊂ ∂N . Thus,
π is finite to one.
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We claimπ is an embedding. Choose baseframes determining Kleinian groups
as in proposition 6.6. Ifπ is not an embedding, then the algebraic limitΓ∞ has
finite index in the stabilizer StabΓG

(ΩY ) of ΩY in ΓG. Thus, there is an elementγ
in StabΓG

(ΩY ) that does not lie inΓ∞ but so thatγk ∈ Γ∞.
By a standard argument [JM, Lem. 3.6] ifρi are representations determined by

(Qi, ωi), and we haveρi(g) → γk for someg ∈ π1(S), andρi(hi) → γ for hi ∈
π1(S), theng = hki for all i� 0. By unique divisibility ofπ1(S), hi = h ∈ π1(S)
for all i� 0 and thusρi(h) → γ. Thus,γ lies inΓ∞, soπ is an embedding. ut
Iteration converges.We now apply the gluing lemma to the setting of iteration to
prove lemma 6.2. Theorem 6.1 will follow.

Proof (of lemma 6.2).Fix (X,Y ) ∈ Teich(S) × Teich(S). LetQi = Q(ϕiX,Y )
denote the iteration of the mapping classϕ on the Bers sliceBY . The proof divides
into cases.

Case 1:SF(ϕ) is the entire surfaceS. If SF(ϕ) = S thenϕ has finite orders.
Then thes algebraic and geometric accumulation points are

Q(X,Y ), Q(ϕX,Y ), . . . , Q(ϕs−1X,Y ),

all of which are quasi-Fuchsian, and thence mutually quasi-isometric.

Case 2:SF(ϕ) is empty. Decomposition 4.8 guarantees that the limitQϕ has a
unique componentY = ∂Qϕ in its conformal boundary if and only ifSF(ϕ) = ?.
HenceQϕ is totally degenerate.

We claim any such accumulation point is a strong limit: i.e.N = Qϕ. Let
Qϕ = H 3/Γϕ coverN = H 3/ΓG so thatΓϕ < ΓG. By corollary 6.7, the unique
componentΩY of the domain of discontinuityΩ(Γϕ) embeds in the domain of dis-
continuityΩ(ΓG), soΩ(ΓG) = ΩY . Moreover, the natural coveringπ : Qϕ → N
extends to a holomorphic embedding on the unique componentY ⊂ ∂Qϕ. Thus the
covering

ΩY /Γϕ → Ω(ΓG)/ΓG

is a homeomorphism and we haveΓϕ = ΓG. It follows thatN = Qϕ, and likewise
N ′ = Q′

ϕ so this case follows from theorem 5.7.

Case 3:SF(ϕ) is neither the entire surfaceS, nor empty. We reduce to the case
thatϕ is stable as follows.

Reduction to stable case.Let Qi = Q(ϕiX,Y ). As remarked in section 4, if a
subsequenceQij converges toQϕ then for any accumulation pointQ′

ϕ of Qij+1,
we haved(Qϕ, Q′

ϕ) < ∞ by lower semi-continuity ofd(., .) [Mc2, Prop. 3.1]. In
other words, there is a marking preserving quasi-isometry fromQϕ toQ′

ϕ.
A similar argument works for geometric limits: pass to a subsequence so that

{Qij} converges geometrically to a limitN covered byQϕ. LetQ′
ϕ be a limit of

{Qij+1} coveringN ′ after passing to further subsequences. Then as in the proof of
theorem 5.4, quasi-isometriesΘj : Qij → Qij+1 have lifts that extend to uniformly
quasiconformal conjugacies, which converge up to subsequence. Any limit descends
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to a marking-preserving quasi-isometrỹΘ : Qϕ → Q′
ϕ that covers a quasi-isometry

Θ : N → N ′ between pairs of geometric accumulation points.
Thus, it suffices to prove lemma 6.2 for any finite power ofϕ, so we may assume

ϕ is stable. We fix our attention on one componentF0 ⊂ SF(ϕ). The stable mapping
classϕ stabilizes the isotopy class of each elementη ∈ π1(F0).

The re-marking trick.The re-markingsϕ−i(Q(ϕiX,Y )) = Q(X,ϕ−iY ) range in
a precompact slice ofQF (S) obtained by fixing the first factor in the parameter-
ization. After passing to successive subsequences so that{Q(ϕiX,Y )} converges
algebraically toQϕ, and geometrically to a limitN covered byQϕ, pass to a fur-
ther algebraically convergent sequence of re-markings{Q(X,ϕ−iY )} converging
toQϕ−1. Let

(fi : S → Qi) → (f : S → Qϕ) and (gi : S → Qi) → (g : S → Qϕ−1)

denote their implicit markings. By theorem 4.7, for each componentF0 of SF(ϕ)
the subgroupf∗(π1(F0)) is quasi-Fuchsian, as isg∗(π1(F0)).

Let
∂qfQϕ = W1 t . . . tWq and ∂qfQϕ−1 = Z1 t . . . t Zq

be quasi-Fuchsian conformal boundary components such thatWn is uniformized by
f∗(π1(Fn)) andZn is uniformized byg∗(π1(Fn)) for eachFn ⊂ SF(ϕ). There is a
natural gluing involution

τ : ∂qfQϕ 
 ∂qfQϕ−1

determined up to isotopy by the condition thatτ∗ = idπ1(Fn) for eachn = 1, . . . , q.

Lemma 6.8 THE RE-MARKING LEMMA . The manifoldQϕtQϕ−1 solves the glu-
ing problemτ , and(Qϕ tQϕ−1)/τ is isometric to the geometric limitN .

Proof.Using the same indices, we pass to the chosen subsequences of

Q(ϕiX,Y ) = (fi : S → Qi) and Q(X,ϕ−iY ) = (gi : S → Qi).

We apply the gluing lemma to these subsequences with respect to the surfaceF0 ⊂
SF(ϕ). We claim these subsequences satisfy its hypotheses.

First, sinceϕ preserves the isotopy class of eachη ∈ π1(F0), the subgroup
(fi)∗|π1(F0) is conjugate to(gi)∗|π1(F0) in π1(Qi). SoQϕ−1 also coversN by a
locally isometric covering compatible withf∗ andg∗ onπ1(F0).

We now check the other hypotheses.

Hypothesis a):That the restrictionf∗(π1(F0)) of f∗ to π1(F0) has quasi-Fuchsian
image (and similarly forg∗) follows from theorem 4.7. The coverings ofQϕ and
Qϕ−1 corresponding tof∗(π1(F0)) andg∗(π1(F0)) are isometrically identified with
the quasi-Fuchsian manifoldQ0 ∈ QF (F0).

Hypothesis b):It remains to verify that in passing to the quasi-Fuchsian cover
Q0 the surfacesW0 ⊂ ∂qfQϕ andZ0 ⊂ ∂qfQϕ−1 uniformized byf∗(π1(F0))
andg∗(π1(F0)) lift to distinct components of∂Q0. We appeal to baseframes and
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Kleinian groups to make use of Carath´eodory convergence. Fix a baseframeω ∈
Q0. Then(Q0, ω) determines the quasi-Fuchsian groupΓ0. Let

qϕ : Q0 → Qϕ and qϕ−1 : Q0 → Qϕ−1

denote the locally isometric covering projections, and let

(Qϕ, qϕ(ω)) = (H 3 , ω̃)/Γϕ and (Qϕ−1, qϕ−1(ω)) = (H 3 , ω̃)/Γϕ−1

for Kleinian groupsΓϕ andΓϕ−1. ThenΓ0 is a subgroup ofΓϕ andΓϕ−1.
The coveringspϕ : Qϕ → N and pϕ−1 : Qϕ−1 → N , being compatible on

π1(F0), determine the diagram of covering spaces

Qϕ
pϕ

!!DD
DD

DD
DD

Q0

qϕ
<<yyyyyyyy

qϕ−1 ""EE
EE

EE
EE

N

Qϕ−1

pϕ−1

==zzzzzzzz

The baseframepϕ ◦ qϕ(ω) ∈ N determines the geometric limit Kleinian groupΓG
so thatΓϕ < ΓG andΓϕ−1 < ΓG.

LetΩY ⊂ Ω(Γϕ) andΩX ⊂ Ω(Γϕ−1) denote the invariant components forΓϕ
andΓϕ−1. The componentsΩY andΩX coverY = ΩY /Γϕ andX = ΩX/Γϕ−1.
The limit sets are their frontiersΛ(Γϕ) = ∂ΩY andΛ(Γϕ−1) = ∂ΩX .

By Carathéodory convergence (proposition 6.6), the domainsΩX andΩY em-
bed disjointly in the domain of discontinuityΩ(ΓG) soΩX lies in some comple-
mentary componentD ⊂ Ĉ − ΩY . SinceD covers a quasi-Fuchsian component
of ∂Qϕ, ∂D is a Jordan curve. AsΓ0 is a common subgroup ofΓϕ andΓϕ−1, its
limit setΛ(Γ0) lies in the intersection∂ΩX ∩∂ΩY which is contained in∂D. Since
Λ(Γ0) is a Jordan curve,Λ(Γ0) = ∂D = ∂ΩY ∩ ∂ΩX . ThusΩX andΩY lie on
different sides ofΛ(Γ0), and we conclude that the componentsW0 ⊂ ∂Qϕ and
Z0 ⊂ ∂Qϕ−1 lift to distinct components of∂Q0.

Having satisfied the hypotheses of lemma 6.5 for arbitraryF0 ⊂ SF(ϕ), the
manifoldQϕ tQϕ−1 is a solution to the gluing problemτ : ∂qfQϕ 
 ∂qfQϕ−1 that
covers the geometric limitN compatibly withτ . Applying GIII , (Qϕ t Qϕ−1)/τ
coversN by a local isometry

π : (Qϕ tQϕ−1)/τ → N.

Applying GI , we have∂
(
(Qϕ tQϕ−1)/τ

)
= X t Y . LettingΓτ < ΓG be the

subgroup so that(Qϕ t Qϕ−1)/τ = H 3/Γτ , the domain of discontinuityΩ(Γτ )
consists ofΩX ,ΩY and their translates underΓτ . SinceΓτ is a subgroup ofΓG, we
haveΩ(ΓG) ⊂ Ω(Γτ ). By proposition 6.6, the domainsΩX andΩY embed inΩG,
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so since each elementγ ∈ Γτ lies inΓG, all translates ofΩX andΩY by elements
of Γτ also embed inΩ(ΓG). Thus we haveΩ(Γτ ) ⊂ Ω(ΓG) which implies that

Ω(Γτ ) = Ω(ΓG).

It follows that the locally isometric coveringπ extends to a covering map

π : Ω(ΓG)/Γτ → Ω(ΓG)/ΓG.

But by corollary 6.7,π is an embedding on each componentX andY of

∂
(
(Qϕ tQϕ−1)/τ

)
.

By proposition 6.6, the orbitsΓG(ΩX) andΓG(ΩY ) are disjoint, soπ extends to an
embeddingπ on the disjoint unionX t Y . SinceX t Y = Ω(ΓG)/Γτ , it follows
thatπ is a holomorphic isomorphism, soΓτ = ΓG. Thus,π is an isometry. ut
Remark: In the final step of the proof, use of the conformal boundary obviates the
need for any discussion of how simply degenerate ends cover in the natural covering
(Qϕ tQϕ−1)/τ → N , a topic of considerable subtlety and interest in its own right
(see [Th1,§9] [Can2] [AC], for example).

Continuation of the proof of lemma 6.2:By theorem 5.7, there are marking-
preserving quasi-isometries

Θϕ : Qϕ → Q′
ϕ and Θϕ−1 : Qϕ−1 → Q′

ϕ−1

which we view as a marking-preserving quasi-isometry

Θ : Qϕ tQϕ−1 → Q′
ϕ tQ′

ϕ−1.

The disjoint unionsQϕ tQϕ−1 andQ′
ϕ tQ′

ϕ−1, then, lie in the same deformation
space, and they are solutions to a common gluing problem

τ : ∂qfQϕ 
 ∂qfQϕ−1,

namely, the natural gluing problem of the re-marking lemma (lemma 6.8). By theo-
rem 6.4, there is a quasi-isometry

Θτ : (Qϕ tQϕ−1)/τ → (Q′
ϕ tQ′

ϕ−1)/τ.

By the re-marking lemma,Θτ is a quasi-isometry

Θτ : N → N ′

between the geometric accumulation pointsN , andN ′ of the iteration ofϕ onBY .
Lemma 6.2 follows, sinceΘτ is covered by a marking-preserving quasi-isometry
Θ̃τ : Qϕ → Q′

ϕ. ut
Remark: The quasi-isometryΘτ also lifts to a marking-preserving quasi-isometry

Θ̃τ
′
: Qϕ−1 → Q′

ϕ−1 .

Applying lemma 6.2, we prove geometric, and thence algebraic, convergence.
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Proof (of theorem 6.1).Consider again the cases of lemma 6.2.

Case 1:If SF(ϕ) = S then stability impliesϕ = id and there is nothing to prove.

Case 2:If SF(ϕ) = ?, then for any pair of accumulation pointsQϕ andQ′
ϕ of

{Q(ϕiX,Y )}, Case 2 of the proof of lemma 6.2 implies that∂Qϕ = Y = ∂Q′
ϕ and

thatQϕ andQ′
ϕ are each strong limits. Since

Def(Qϕ) = Teich(∂Qϕ) = Teich(S),

and there is a marking-preserving quasi-isometryΘ : Qϕ → Q′
ϕ,Qϕ andQ′

ϕ repre-
sent the same point in Def(Qϕ). HenceQϕ = Q′

ϕ, and the sequence{Q(ϕiX,Y )}
converges strongly toQϕ.

Case 3:AssumeSF(ϕ) 6= S,?. LetQϕ andQ′
ϕ be any two algebraic accumulation

points of{Q(ϕiX,Y )}∞i=1 and letN andN ′ be geometric accumulation points they
cover. As in the re-marking lemma, letQϕ−1 andQ′

ϕ−1 be corresponding limits of

the re-markings{Q(X,ϕ−iY )} after passing to further subsequences.
By lemma 6.2 (and its proof), there is a quasi-isometry

Θτ : N → N ′

that lifts to quasi-isometries̃Θτ : Qϕ → Q′
ϕ andΘ̃τ

′
: Qϕ−1 → Q′

ϕ−1 each compat-
ible with markings.

Since the injectivity radius ofN is bounded throughout its convex core and its
conformal boundary is incompressible, we have

Def(N) = Teich(∂N) = Teich(S)× Teich(S).

As ∂N = X t Y = ∂N ′, Θτ is homotopic to an isometryξ : N → N ′. Geometric
convergence follows.

Lifting ξ to a marking-preserving isometrỹξ : Qϕ → Q′
ϕ, we conclude that

{Q(ϕiX,Y )} converges algebraically as well.ut
Corollary 6.9 STRONG CONVERGENCE. Let ϕ ∈ Mod(S) be a mapping class.
Then the sequence{Q(ϕiX,Y )} converges strongly if and only if the finite order
subsurfaceSF(ϕ) is empty orSF(ϕ) = S.

If SF(ϕ) = S then the limit does not depend onX .

Proof. We proved the condition is sufficient above. To see it is also necessary, ob-
serve that whenSF(ϕ) is not the whole surface and also non-empty, lemma 6.8
realizes any geometric limitN as a nontrivial gluing(QϕtQϕ−1)/τ of algebraic ac-
cumulation pointsQϕ andQϕ−1. It follows that the natural covering mapQϕ → N
is not an embedding, and the convergence is not strong.

ReplacingX with X ′ produces a limitQ′
ϕ lying in Def(Qϕ). WhenSF(ϕ) = S

we again have∂Qϕ = Y = ∂Q′
ϕ, soQϕ = Q′

ϕ and the limit does not depend on
X . ut

For completeness, we include the following corollary (cf. [Bers4, Lem. 2a]). An
essential subsurfaceS′ ⊂ S is rigid if int(S′) consists of triply punctured spheres.
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Corollary 6.10 Let ϕ ∈ Mod(S) be a mapping class. If the finite order subsur-
faceSF(ϕ) is rigid, then for any(X,Y ) ∈ Teich(S) × Teich(S), the sequence
{Q(ϕiX,Y )}∞i=1 converges algebraically to a limit that does not depend onX .

Proof. If SF(ϕ) is rigid, then for any limitQϕ of {Q(ϕiX,Y )} the surfaces in∂Qϕ
other thanY have no moduli. Thus, Def(Qϕ) = Teich(S). The same holds for any
limit Q′

ϕ of {Q(ϕiX ′, Y )} with X ′ in place ofX , soQϕ andQ′
ϕ determine the

same point in Def(Qϕ). ut
Corollary 6.11 If dimC (Teich(S)) = 1, andϕ ∈ Mod(S) has infinite order, then
for any (X,Y ) ∈ Teich(S) × Teich(S) the sequence{Q(ϕiX,Y )}∞i=1 converges
algebraically to a limit that does not depend onX .

Proof.Since the dimensiondimC (Teich(S)) = 1, eitherSF(ϕ) = ? or int(SF(ϕ))
is a pair of triply punctured spheres. HenceSF(ϕ) is either empty or rigid, and the
corollary follows from corollaries 6.9 and 6.10.ut
Finite order behavior. Finally, we justify the hypothesis of stability.

Theorem 6.12 FINITE-ORDER NON-CONVERGENCE. Given anyS for which the
complex dimensiondimC (Teich(S)) > 1, there existsϕ ∈ Mod(S) of infinite order
andX ∈ Teich(S) such that in any Bers sliceBY the sequence{Q(ϕiX,Y )}∞i=1
has more than one algebraic accumulation point inBY .

Proof. Let S have genusg with n boundary components. The complex dimension
of the Teichm¨uller space Teich(S) is given in terms ofg andn by the formula

dimC (Teich(S)) = 3g − 3 + n.

If dimC (Teich(S)) > 1 then eitherg = 0 andn ≥ 5, g = 1 andn ≥ 2 or
g ≥ 2. There is an essential proper subsurfaceT ⊂ S such that the interior int(T )
is homeomorphic either to a punctured torus or a sphere with four points removed,
and so thatT has precisely one boundary componentγ ⊂ ∂T not in common with
S (see figure 8). Then there is a mapping classϕ ∈ Mod(S) so that

γ

ϕ(α)

α

γ

g > 0g = 0
α

T T
ϕ(α)

Figure 8. The subsurface T � S.

1. ϕ induces an orders element of Mod(T ) via restriction,
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2. there is an isotopy class of essential non-peripheral simple closed curvesα ⊂ T
with i(ϕ(α), α) 6= 0, and

3. ϕs is a single Dehn twist aboutγ.

Sinceϕs is stable, corollary 6.3 implies that for anyX ∈ Teich(S) the sequence
{Q(ϕiX,Y )}∞i=1 has a mosts accumulation points

Qa = lim
i→∞

Q(ϕsi+aX,Y ), a = 0, . . . , s− 1,

with geometric limitsN0, . . . ,Ns−1.
The geometric limitN0 has conformal boundary∂N0 = X t Y in the markings

induced by the gluing in lemma 6.2. Likewise, we have∂N1 = ϕX t Y since this
limit is obtained from iteration ofϕs onBY beginning atQ(ϕX,Y ).

The algebraic limitsQ0 andQ1 each have quasi-Fuchsian covers corresponding
to T . Let Z0 ⊂ ∂Q0 andZ1 ⊂ ∂Q1 be elements of Teich(T ) in the conformal
boundary ofQ0 andQ1 uniformized by the quasi-Fuchsian subgroup corresponding
to T . In the coveringQ0 → N0, the surfaceX ⊂ ∂N0 lifts to a surfaceX̃ ⊂ ∂Q0

that includes into the surfaceZ0. LikewiseϕX ⊂ ∂N1 lifts to a surfacẽϕX ↪→ Z1.
By the collar lemma (see [Bus, Thm. 4.1.1]), givenK > 0 we may choose

ε > 0 so that ifX is a Riemann surface on which the simple closed curveα has
lengthX(α) < ε then the annularK-neighborhood of̃α in the coverX̃ of X corre-
sponding to〈α〉 ∼= Z embeds in the covering projection toX .

TakingK sufficiently large to ensure that the correspondingε is less thanK, we
chooseX ∈ Teich(S) on which lengthX(α) < ε. Then

lengthϕX(ϕ(α)) < ε and lengthϕX(α) > K.

The coveringsX̃ → X andϕ̃X → ϕX are isometric in the Poincar´e metrics,
and the inclusions̃X ↪→ Z0 and ϕ̃X ↪→ Z1 induce contractions of the Poincar´e
metrics [Mc2, Prop. 4.9]. It follows that

lengthZ0
(α) < ε and lengthZ1

(ϕ(α)) < ε.

Applying the collar lemma, we have that lengthZ1
(α) > 2K > ε, which implies

thatZ0 6= Z1 in Teich(T ).
Hence, there is no isometry betweenQ0 andQ1 that respects markings, soQ0

andQ1 represent distinct points in∂BY . ut

7 Quasi-isometric models

In this section we describe how quasi-isometric models for the algebraic and geo-
metric limits of iteration ofϕ ∈ Mod(S) on a Bers’ slice can be constructed directly
fromϕ.

Models for algebraic limits. It suffices to build a quasi-isometric model for limits
of stable iteration. Letϕ ∈ Mod(S) be a stable mapping class.
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Structure of Q'. Let Pϕ be the cuspidal thin part ofQϕ. Let {Aj}kj=1 enumerate

the annuli inN (Π(ϕ)), let {Sm}pm=1 enumerate components ofSP(ϕ), and let
{Fn}qn=1 enumerate components ofSF(ϕ).

Then as in decomposition 4.8, any relative compact core

ιϕ : (Mϕ,Pϕ) → (Qϕ − Pϕ, ∂Pϕ)

has the following form up to diffeomorphism.

1. Mϕ
∼= S × I,

2. Pϕ = (∂S × I) ∪ (∪kj=1Aj × {0}), and
3. ∂0Mϕ = Y ∪ (∪pm=1Sm × {0}) ∪ (∪qn=1Fn × {0}) whereY = S × 1.

For any mapping classψ ∈ Mod(S), the mapping torusTψ is quasi-isometrically
unique by compactness of its pared submanifold. Thus, the coverMψ corresponding
to the fiber is as well, so whenψ is pseudo-Anosov we may describe the quasi-
isometric geometry ofMψ without reference to specific hyperbolic structures.

To construct a quasi-isometric model forQϕ, we note that by corollary 2.14 it
suffices to give a quasi-isometric model for the pared submanifold of its convex
core; the geometrically finite ends carry no essential quasi-isometric data.

We take any differentiable structure on(Mϕ,Pϕ) above.

Periodic ends:Letψm be the pseudo-Anosov mapping class induced onSm by the
first iterate ofϕ that leavesSm invariant. For each surfaceSm × {0} constructan
endE1

m by fixing a smooth structure on(Sm × {0}) × [0, 1] and gluing successive
copies end to end in the negative direction by a diffeomorphism representingψm.
The resulting endE1

m, marked by the inclusionιm : Sm → E1
m is quasi-isometric to

the negative end ofMψ−1
m

marked by the lift of the fiberSm.

Adjoin eachE1
m, m = 1, . . . , p, to (Mϕ,Pϕ) alongSm × {0} by the identity.

Call the resulting manifoldMϕ. Then we have the following.

Proposition 7.1 The modelMϕ is quasi-isometric to a neighborhood of the pared
submanifold of the convex core ofQϕ. ut

Models for geometric limits. When iteration is not strongly convergent,N is re-
alized as the gluing(Qϕ t Qϕ−1)/τ of Qϕ with the limit Qϕ−1 of its re-markings
{Q(X,ϕ−iY )}∞i=1, by lemma 6.8. In this case, the Klein-Maskit theory (see theo-
rem 6.4) gives a quasi-isometric model for any gluingM/τ explicitly in terms of
M and the gluing data. From this argument, it follows that the geometric limitN
has a standard quasi-isometric model when the iteration is not strongly convergent.

Structure of Q'�1 . As above, letPϕ−1 be the cuspidal thin part ofQϕ−1 . Then
Qϕ−1 too has a relative compact core

ιϕ−1 : (Mϕ−1,Pϕ−1) → (Qϕ−1 − Pϕ−1, ∂Pϕ−1)

with the following form up to diffeomorphism.

1. Mϕ−1
∼= S × I,
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2. Pϕ−1 = (∂S × I) ∪ (∪kj=1Aj × {1}), and
3. ∂0Mϕ−1 = X ∪ (∪pm=1Sm × {1}) ∪ (∪qn=1Fn × {1}) whereX = S × {0}.

As above, for each surfaceSm construct an endE ′m by gluing a half infinite
collection of copies ofSm × {1} × [0, 1] end to end in thepositivedirection by a
diffeomorphism representingψ−1

m . ThenE ′m is quasi-isometric to thepositiveend
of the pared submanifold ofMψ−1

m
. After adjoining each endE ′m to (Mϕ−1,Pϕ−1)

alongSm×{1}, denote the resulting model for the pared submanifold of the convex
core byMϕ−1.

Gluing: Let T : {∪qn=1Fn × {0}} → {∪qn=1Fn × {1}} be the defined by the iden-
tification T (x, 0) = (x, 1). Then by the proof of theorem 6.4, and lemma 6.8 this
gluing determines the quasi-isometric model for the geometric limit (figure 9).

Theorem 7.2 If Q(ϕiX,Y ) does not converge strongly, then the gluing

Mϕ

⋃
T

Mϕ−1

is quasi-isometric to a smooth neighborhood of the pared submanifold of the convex
core ofN . ut

F1

F2

S1

T

Mϕ−1 Mϕ

E ′1

Π(ϕ)

SP(ϕ)

SF(ϕ)

E1

Dϕ

Figure 9. Gluing the modelsMϕ andMϕ−1 by T .

Recall thatDϕ ⊂ S is the subsurface ofS determined up to isotopy byS −
SF(ϕ). As a consequence, we have:

Theorem 7.3 HOMEOMORPHISMTYPES. LetN be the geometric limit of iteration
of ϕ ∈ Mod(S). Then eitherDϕ = S andN has the homeomorphism typeN ∼=
int(S)× R, orN has the homeomorphism type

N ∼= int(S)× R −Dϕ × {0}. ut
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The annuli inDϕ recede to rank-2 cusps, while each of the subsurfacesSm ⊂ Dϕ

of negative Euler characteristic recede to infinity leaving a pair of quasi-periodic
simply degenerate ends.
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