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1 Introduction

An irreducible 3-manifold M is tame if it is homeomorphic to the interior of a compact 3-
manifold. In this paper we address the following conjecture of A. Marden.

Marden’s Tameness Conjecture. Let M be a complete hyperbolic 3-manifold with finitely generated
fundamental group. Then M is tame.

In his 1986 article [Th2], W. Thurston proposed that one might approach Marden’s conjecture
from a dynamical point of view via a study of limits in the natural deformation space: its interior
consists of geometrically finite manifolds, and promoting their tameness to algebraic limits on the
boundary has proven to be a successful strategy to address Marden’s conjecture in special cases.
In this paper we complete this part of his approach.

Theorem 1.1. Each algebraic limit of geometrically finite hyperbolic 3-manifolds is tame.

Theorem 1.1 reduces Marden’s tameness conjecture to the density conjecture of Bers, Sul-
livan, and Thurston, which predicts that every hyperbolic 3-manifold with finitely generated
fundamental group is an algebraic limit of geometrically finite hyperbolic 3-manifolds.

Our result finishes the cases left unaddressed by our previous work with K. Bromberg and R.
Evans (see [BBES]). We first outline some further consequences of our results and then review
the history of our approach.

Strong convergence. A central difficulty arising in the consideration of algebraic convergence
is the lack of continuity of many important geometric and topological properties. A better
topology for understanding geometric changes under deformations is the Gromov-Hausdorff or
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geometric topology on the set {(M,ω)} of complete hyperbolic 3-manifolds M equipped with
base-frames ω , specified by a choice of orthonormal frame at a basepoint.

After passing to a subsequence, manifolds in an algebraically convergent sequence Mn → M
may be equipped with base-frames ωn so that the sequence (Mn,ωn) converges geometrically to a
limit (NG,ωG) with a locally isometric cover

π : (M,ω)→ (NG,ωG)

by the natural framed algebraic limit (M,ω). When π is an isometry and the algebraic and
geometric limits agree, we say the convergence to the limit is strong.

If cusps of the limit M of a sequence Mn correspond algebraically to cusps of the approximates,
we say the convergence Mn → M is type-preserving. This condition is motivated by a conjecture
of Jørgensen.

Jørgensen’s Conjecture. Let (Mn) be an algebraically convergent sequence of geometrically finite
hyperbolic 3-manifolds with limit M. If the convergence Mn →M is type-preserving then it is strong.

In [BBES], our strategy was to show that each algebraic limit of geometrically finite manifolds
is approximated by a type-preserving sequence Mn→M. Applying cases of Jørgensen’s conjecture
due to Anderson and Canary [AC1, AC2], tameness of the limit M follows provided M has non-
empty conformal boundary by results of Canary-Minsky and Evans [CM, Ev]. Here, while we
employ a similar philosophy of improving our approximating sequences, we engage in a more
specific topological investigation of the geometric limit to show tameness of the limit M directly.
As a corollary we confirm Jørgensen’s conjecture.

Theorem 1.2. Let (Mn) be a sequence of geometrically finite manifolds converging in a type-preserving
manner to a limit M. Then the convergence of (Mn) to M is strong.

Proof. When M has non-empty conformal boundary, the theorem follows from the main results
of [AC1, AC2]. Otherwise, applying Theorem 1.1, the limit M is tame, and the strong conver-
gence follows from [Can3, Theorem 9.2] �

Conformal dynamical systems. Theorem 1.1 has important dynamical consequences for the
action of the associated Kleinian group on Ĉ. In [BBES] we applied the work of Thurston,
Bonahon, and Canary (see [Th1, Bon, Can2]) to show that for each algebraic limit M = H3/Γ of
geometrically finite hyperbolic 3-manifolds the Ahlfors measure conjecture holds, namely that
either the limit set Λ(Γ) is all of Ĉ or Λ(Γ) has Lebesgue measure zero on Ĉ.

The tameness of general algebraic limits gives stronger consequences.

Corollary 1.3. Let M = H3/Γ be an algebraic limit of geometrically finite manifolds. Then either
Λ(Γ) has measure zero, or Λ(Γ) = Ĉ and Γ acts ergodically on Ĉ× Ĉ. �
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The latter conclusion guarantees the geodesic flow on the unit tangent bundle T1(M) is er-
godic, as well as the non-existence of measurable Γ-invariant line fields on Λ(Γ) established in
more general contexts by Sullivan early on (cf. [Sul, Th1, Mc]).

Deformation spaces. In the course of the proof of Theorem 1.1 we verify certain conjectural
features of the deformation space of hyperbolic 3-manifolds with a given homotopy type. In
particular, Thurston conjectured that each algebraic limit of geometrically finite manifolds is a
strong limit of a perhaps different sequence of such manifolds (see [Th3]). After [BBES, Theorem
1.9], each limit of geometrically finite manifolds is a type-preserving limit of geometrically finite
manifolds, so Thurston’s conjecture then follows from Theorem 1.2.

Theorem 1.4. Let M be an algebraic limit of geometrically finite hyperbolic 3-manifolds. Then there
is a strongly convergent sequence Mn →M with Mn geometrically finite. �

Also of interest in the proof of the main theorem are certain uniform estimates we obtain for
limits of surfaces in 3-manifolds. We plan in a future paper to employ these estimates to study
the relationship between the geometry of closed hyperbolic 3-manifolds and the combinatorics
of their Heegaard splittings.

History. Our main theorem is a culmination of a series of similar results. In his original lecture
notes [Th1], Thurston introduced the notion of geometric tameness for an incompressible end of
a hyperbolic 3-manifold M. This condition posits the existence of closed geodesics exiting the
end that are homotopic to simple curves on the boundary of a compact core for M.

Thurston showed that this notion of geometric tameness persists in limits of geometrically
finite hyperbolic 3-manifolds with freely-indecomposable fundamental group and with certain
assumptions on cusps. He showed moreover that the topological tameness predicted by Mar-
den’s conjecture follows in these cases, as well as the dynamical conclusions of Corollary 1.3.
F. Bonahon later proved geometric tameness holds generally for hyperbolic 3-manifolds with
incompressible ends [Bon], but the compressible case has remained open.

In [Can2], R. Canary demonstrated that topological tameness always guarantees geometric
tameness for hyperbolic 3-manifolds, once this notion is appropriately generalized to the setting
of compressible ends, and also that the conclusions of Corollary 1.3 hold as a consequence. The
condition of topological tameness has been a central focus since this work. Renewing the limiting
approach, Canary and Y. Minsky [CM] established that tameness persists in cusp-free limits of
cusp-free hyperbolic manifolds, under the extra assumption that the convergence is strong. Work
of R. Evans [Ev] generalized these results to the type-preserving (and weakly type-preserving)
setting.

Recent developments in the deformation theory of hyperbolic cone-manifolds have improved
our ability to choose a desirable sequence of approximating manifolds for a given limit of geomet-
rically finite manifolds. Indeed, this is the central technique of our recent work with K. Bromberg
and R. Evans in [BBES], which applies a drilling theorem of [BB] to establish that each algebraic
limit of geometrically finite manifolds has a sequence of type-preserving approximates.
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Combining this fact with theorems of Anderson and Canary (see [AC1, AC2]) giving criteria
for algebraic and geometric limits to agree (cf. Theorem 1.2), the main theorem of [Ev] guarantees
that the limit M is tame whenever either

1. M has non-empty conformal boundary, or

2. π1(M) is not a compression body group

(recall G is a compression body group if it is isomorphic to a non-trivial free product of orientable
surface groups and infinite cyclic groups). It is the remaining recalcitrant case that the limit M
has empty conformal boundary and π1(M) is a compression body group that we address in the
present treatment.

Plan of the paper. We describe the plan of the paper and suggest the structure of the argument.
In section 2 we give a condition on a sequence that guarantees that all cusps of the geometric limit
of a sequence Mn correspond geometrically to cusps in Mn; like the type-preserving condition for
algebraic convergence, this condition gives us substantially more control over degenerations that
can occur. Section 3 proves a combination theorem for tame hyperbolic manifolds along essential
incompressible surfaces.

Applying these techniques, in section 4 we give the proof of the main theorem assuming
the existence of a tame degenerate (relative) end E in the geometric limit bounded by a surface
S that is either compressible or incompressible with an essential curve that is homotopic to a
cusp by a homotopy that intersects the core essentially. Cutting along essential disks or annuli
we decompose π1(M) into subgroups with non-empty domain of discontinuity, reducing the
theorem to the main theorem of [BBES].

The remainder of the paper is devoted to finding the surface S and the tame end E of the
geometric limit bounded by S. The techniques here are generalizations of the interpolation argu-
ments of Canary-Minsky, together with a crucial application of the geometrically type-preserving
condition defined in section 2 to make the arguments work in the presence of cusps.

Acknowledgments. The authors are grateful to the University of Bonn, the University of
Chicago, the University of Texas, and the Harrington Foundation for their generous support
of this collaboration. They would also like to thank Ken Bromberg and Richard Evans for many
informative conversations the referee for many detailed observations and suggestions.

Remark: During this manuscript’s final stages of preparation, Ian Agol announced a proof of
the tameness conjecture, and Danny Calegari and David Gabai announced an indepenent proof
shortly thereafter.

2 Deformations, drilling and strong convergence

In this section we establish the central tool that will allow us to control the behavior of parabolics
in an algebraically convergent sequence. We begin by introducing the necessary background on
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algebraic and geometric convergence, and then discuss how to find a sequence approximating
a given algebraic limit M of geometrically finite manifolds in such a way that the cusps of the
geometric limit correspond to cusps in the approximates Mn.

Background. Recall, a Kleinian group is a discrete torsion-free subgroup of Isom+H3, the orientation-
preserving isometries of hyperbolic 3-space. To fix notation, we will refer to the quotient
M = H3/Γ of hyperbolic 3-space by a Kleinian group as a hyperbolic 3-manifold, assuming im-
plicitly that M is complete and oriented by the standard orientation on H3. Unless otherwise
stated, all Kleinian groups will be assumed non-elementary. The extension of the action of Γ to
the Riemann sphere partitions Ĉ into its domain of discontinuity Ω where Γ acts properly discon-
tinuously and its complementary limit set Λ = Ĉ\Ω. We denote by ∂M the conformal boundary
Ω/Γ obtained as the quotient of Ω.

Deformation spaces and the geometric topology. Let N be a compact 3-manifold whose in-
terior int(N) is homeomorphic to H3/Γ for some Kleinian group Γ. Then the representation
space

AH(N) = {ρ : π1(N)→ Isom+H3 | ρ is discrete and 1-1 }/conj.

parameterizes complete hyperbolic 3-manifolds homotopy equivalent to N. Convergence ρn→ ρ

of such representations is called algebraic convergence, and AH(N) inherits the algebraic topology
as the quotient of the topology of algebraic convergence. The convergence ρn → ρ is called
type-preserving when ρn(g) is parabolic if and only if ρ(g) is as well.

As each conjugacy class in AH(N) determines a complete hyperbolic 3-manifold up to isom-
etry, we will often refer to the hyperbolic manifold itself as an element M ∈ AH(N) assuming an
implicit isomorphism ρ : π1(N)→ π1(M).

Unfortunately, fine geometric information can be lost in the passage to limits. Each alge-
braically convergent sequence ρn → ρ admits a subsequence that converges geometrically as well:
if ρn(π1(N)) = Γn, then (Γn) converges geometrically to its Kleinian geometric limit ΓG if

1. for each γ ∈ ΓG we have γn → γ for some γn ∈ Γn, and

2. if a subsequence (γn j ) converges then its limit lies in ΓG.

It is evident that the limit representation ρ(π1(N)) is a subgroup of ΓG when Γn converges geo-
metrically to ΓG.

A complete hyperbolic 3-manifold M determines a Kleinian group only up to conjugacy;
the additional data of a base-frame ω , namely an orthonormal frame at a basepoint determines
a unique Kleinian group via the condition that the standard base-frame ω̃ ∈ H3 descends to ω

under the locally isometric covering projection (H3, ω̃) → (M,ω). Then a sequence of such
framed hyperbolic 3-manifolds (Mn,ωn) converges geometrically to its geometric limit (NG,ω) =
(H3, ω̃)/ΓG if the associated Kleinian groups converge geometrically to ΓG.

A more geometric formulation of geometric convergence of a sequence (Mn,ωn) of framed
hyperbolic manifolds to the limit (NG,ωG) is the existence of a sequence φn : Kn→Mn of smooth
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embeddings defined on an exhaustion of NG by compact subsets Kn with ωG ∈ Kn so that for each
i and n≥ i the mappings φn have 1-jet sending ωG to ωn and φn converge C∞ on Ki to an isometry.
We call these associated mappings virtually defined almost isometries and use the notation

φn : NG 99K Mn

to refer to these mappings and their implicitly defined compact domains K(φn) = Kn.
The sequence (Mn)⊂AH(N) converges strongly to a limit M ∈AH(N) if Mn converges to M in

AH(N) and there are base-frames ωn ∈Mn and ω ∈M so that (Mn,ωn) converge geometrically to
(M,ω). As a point of terminology, we will say that an algebraically convergent sequence Mn→M
converges geometrically to a limit NG covered by M to refer to the existence of base-frames for which
(Mn,ωn) converges geometrically to (NG,ωG), and NG is locally isometrically covered by M.

The thick-thin decomposition. By the Margulis lemma (see [BP, Thm. D.3.3]), there is a
uniform constant µ > 0, so that for any ε < µ and any complete hyperbolic 3-manifold M, each
component T of the ε -thin part M≤ε of M where the injectivity radius is at most ε has a standard
form: either

1. T is a Margulis tube: a solid torus neighborhood Tε(γ) of a short geodesic γ in M with
`M(γ) < 2ε (T is the short geodesic itself if `M(γ) = 2ε), or

2. T is a cusp: the quotient of a horoball B⊂ H3 by the action of a Z or Z⊕Z parabolic
subgroup of Isom+H3 with fixed point at B∩ Ĉ.

When T = B/Z⊕Z, the component T is called a rank-2 cusp, and when T = B/Z, T is called a
rank-1 cusp. The constant µ is called the 3-dimensional Margulis constant.

Given a complete hyperbolic manifold M and ε < µ , we will typically denote by Pε the
cuspidal ε -thin part of M, namely, the union of components of M≤ε corresponding to cusps of
M, and we will frequently denote single cusp components of M≤ε by Pε . When reference to the
hyperbolic manifold is required we will use the notation Pε(M), though we will often omit the
reference to M when there is no danger of confusion.

Given a complete hyperbolic 3-manifold M with cusps P, we will refer to the complement
M \ int(P) as the pared submanifold of M. Each end of the pared submanifold of M will be called
a relative end of M. A relative end of M is degenerate if it has a neighborhood that embeds in
the convex core of M, and it is tame if it has a neighborhood homeomorphic to S×R+ that is
a component of the complement of a compact surface (S,∂S) ↪→ (M,∂P). When such a surface
determines a neighborhood of a relative end of M, we will frequently make the usual notational
abuse that refers to such a neighborhood of an end as the “end” itself.

The hyperbolic 3-manifold M is geometrically finite if its convex core CC(M), namely, the
minimal geodesically convex subset of M whose inclusion is a homotopy equivalence, has finite
volume. The convex core boundary ∂CC(M) is a collection of finite-area hyperbolic Riemann
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surfaces with the intrinsic path metric induced from M. By a theorem of Marden [Mar], geomet-
rically finite hyperbolic 3-manifolds are tame; for geometrically finite M the interior int(CC(M))
is homeomorphic to M (see [Th1, EM]).

When the geometrically finite manifold M has cusps, the convex core CC(M) is naturally
compactified by adjoining compact annuli and tori at infinity corresponding to each cusp of
M (otherwise M is convex cocompact). We denote by M this compactification, and by the pair
(M ,P) the associated pared manifold for M, where P ⊂ ∂M denotes the union of such parabolic
annuli and tori in ∂M , the parabolic locus. The pared manifold (M ,P) plays primarily the role
of recording topological and algebraic information concerning cusps of the manifold M.

Embedding cores in the geometric limit. A compact core of a 3-manifold N is a compact sub-
manifold C such that the inclusion C ↪→ N is a homotopy equivalence. If the manifold N has
boundary ∂N then a relative compact core is a compact core C such the inclusion of C∩∂N in ∂N
is also a homotopy equivalence. By a theorem of Peter Scott [Sco], each irreducible 3-manifold
with finitely generated fundamental group admits a compact core.

After [BBES], we may constrain our investigation to algebraic limits M homotopy-equivalent
to a compression body, namely, a compact, irreducible, orientable 3-manifold N that has a privi-
leged boundary component ∂extN called the exterior boundary such that π1(∂extN) surjects onto
π1(N). The remaining components ∂N\∂extN are called the interior boundary of N and denoted
∂intN. Each component of ∂intN is incompressible.

Remark: In fact, we may further constrain our working assumptions, but we must first pause to
address an omitted case of [BBES]. Though the hypotheses of [BBES] focus on algebraic limits M
that are not homotopy equivalent to a compression body, its techniques are sufficient to cover all
cases in which the algebraic limit M has a compact core that is not homeomorphic to a compression
body. To see this, note that in this context the remark following Corollary 3.3 of [AC2] applies
to show that any type-preserving sequence Mn → M converges strongly, and thus M is tame
provided each Mn is geometrically finite by the main theorem of [Ev]. Since Theorem 1.9 of
[BBES] guarantees the existence of a type-preserving sequence converging to M, it follows that M
is tame provided its compact core is not homeomorphic to a compression body.

Following the above remark, many of our preparatory discussions will be constrained to
treat the case when the limit M has a compact core homeomorphic to a compression body. In
particular, we now prove the following Lemma allowing us to choose in certain cases a core for
such an M that embeds in the geometric limit (cf. [AC1, AC2]). We remark that the proof of this
lemma was suggested to us by Richard Evans.

Lemma 2.1. Let Mn → M be an algebraically convergent sequence with geometric limit NG covered
by M, and assume M has empty conformal boundary. If M has a compact core C0 homeomorphic
to a compression body, then there is a compact core C for M that embeds in NG under the covering
projection π : M → NG.
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Proof. Let
∂intC0 = ∂1C0t . . .t∂kC0

be the interior boundary of C0. The topology of the ends cut off by ∂1C0, . . . ,∂kC0 is understood
after work of Bonahon (see [Bon]), which we record for future reference.

Bonahon’s Tameness Theorem. Let M be a complete hyperbolic 3-manifold with cuspidal thin part
P. If each end of the pared submanifold M \ int(P) is incompressible then M is tame.

It follows that the boundary components ∂1C0, . . . ,∂kC0 of ∂intC0 bound ends E1, . . . ,Ek of
M with Ei ' ∂iC0×R+. Further, all of these ends are degenerate by our assumption that the
conformal boundary of M is empty. We apply the covering theorem of Thurston and Canary
(see [Th1, Can3]).

The Covering Theorem. Let M be a complete hyperbolic 3-manifold with parabolic locus P and
let N be a hyperbolic 3-manifold covered by M by a local isometry π : M → N. Then if E is a tame
degenerate end of M \P then either N has finite volume and fibers over the circle, the restriction π|E is
finite-to-one.

The covering theorem together with an application of [JM, Lemma 3.6] (see, e.g. [KT, AC1])
implies that the locally isometric cover from an algebraic limit to a corresponding geometric limit
is an embedding on each tame degenerate relative end. Hence, there is an a∈ R+ such that the
subset ∂iC0× [a,∞) of Ei embeds under π for i = 1, . . . ,k. After increasing a we may assume that
π(∂iC0× [a,∞))∩ π(∂ jC0× [a,∞)) = /0 for all i 6= j . Up to changing C0 by an isotopy we may
assume that a = 0, so Ei itself embeds.

Set K =∪k
i=1∂iC0× [0,1]. Now we can choose a graph G⊂M\∪k

i=1Ei which intersects K only
in its endpoints, with K ∪G connected and such that the induced homomorphism π1(K ∪G)→
π1(M) is an isomorphism. Further, a general position argument shows that we can isotope G to
guarantee that π is an embedding when restricted to G.

Assume that π(G) intersects π(Ei) for some i = 1, . . . ,k. Since π(Ei) is homeomorphic to
∂iC×R+ we can isotope π(G) relative to its endpoints in NG to a graph which only intersects
∪iπ(Ei) at its endpoints. This isotopy lifts to an isotopy from G to a graph G′ such that K ∪G′

is connected and embeds under π and such that π1(K ∪G′) → π1(M) is an isomorphism. Any
regular neighborhood C of K∪G′ is a compact core of M and if it is small enough then it embeds
under π . �

Recall that we have the virtually defined maps

φn : NG 99K Mn.

When M is as in the above Lemma, the submanifold Cn = φn(C) ⊂ Mn is a compact core for all
sufficiently large n, say for all n.

8



Uniform length decay. We now define a condition on a geometrically convergent sequence that
will give us a substantially greater degree of control on the degenerations that can occur in the
geometric limit.

Definition 2.2. A sequence (Mn,ωn) of framed hyperbolic 3-manifolds has uniform length decay if
for every n and each R> 0 there is an ε > 0, so that if the R-ball BR(ωn) ⊂ Mn intersects a Margulis
tube Tµ

α about a closed geodesic α , then we have

`(α) > ε.

In a similar spirit to the argument of [BBES], we employ the drilling theorem of [BB] to prove
that each limit of geometrically finite manifolds is approximated by a sequence with uniform
length decay.

Theorem 2.3. Let Mn ∈ AH(N) be an algebraically convergent sequence of geometrically finite man-
ifolds with algebraic limit M. Then there is a sequence (M̂n) converging algebraically to M and base-
frames ωn ∈ M̂n so that (M̂n,ωn) converges geometrically to a geometric limit covered by M and
(M̂n,ωn) has uniform length decay.

The condition of uniform length decay is readily seen to be equivalent to the following con-
dition.

Definition 2.4. Let (Mn,ωn) be a geometrically convergent sequence with limit (NG,ωG). The con-
vergence (Mn,ωn) → (NG,ωG) is geometrically type-preserving if for each cusp P ⊂ NG, there is a
horocyclic loop γ ⊂ P of length µ/2 so that if φn : NG 99K Mn are the corresponding virtually defined
almost isometries then φn(γ) lies in a cusp of Mn for all n sufficiently large.

We note that if Mn lie in AH(N) and the convergence (Mn,ωn) → (NG,ωG) is geometrically
type-preserving then cusps in the algebraic limit correspond (algebraically) to cusps in the ap-
proximates; such a sequence is said to be weakly type-preserving. Observe that the number of
cusps in the geometric limit is bounded in terms of the topology of ∂N.

The final theorem this section shows that any algebraically convergent sequence Mn →M of
geometrically finite hyperbolic 3-manifolds can be replaced by a geometrically type-preserving
sequence with the same algebraic limit. Our method of proof is very similar to the proof of
[BBES, Theorem 1.9] as it employs repeated applications of the following version of the drilling
theorem of [BB, Theorem 1.3].

The Drilling Theorem. Given L > 1 and ε0 < µ , there is an ` > 0 so that if M is a geometrically
finite hyperbolic 3-manifold and η is a closed geodesic in M with length at most `, then there is an
L-bi-Lipschitz diffeomorphism of pairs

h:
(
M \Tε0

η ,∂Tε0
η

)
→

(
M0\Pε0

η ,∂Pε0
η

)
where M0 is the complete hyperbolic structure on M \η with the same conformal boundary, and Pε0

η

is the rank-2 cusp component of the thin part (M0)≤ε0 corresponding to η .
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Remark: We remark that in [BB], we assume M has no rank-1 cusps, but in our setting this
assumption can be avoided by an application of Theorem 3.4 of [BBES] together with a diagonal
argument.

Proof of Theorem 2.3. Since a type-preserving strongly convergent sequence has uniform length
decay, it suffices by results of [BBES] and the remark preceding Lemma 2.1 to consider the case
that M has empty conformal boundary and a compact core homeomorphic to a compression
body. We choose base-frames ωn ∈ Mn so that (Mn,ωn) converges geometrically to a geometric
limit (NG,ωG). Given R> 0, let BR(ωG) denote the ball of radius R about ωG in NG. Then we
define a new sequence MR

n of geometrically finite manifolds in AH(N) converging algebraically to
M with base-frames ωR

n ∈ MR
n so that the based manifolds (MR

n ,ωR
n ) converge geometrically to a

geometric limit (NR
G,ωR

G) covering (NG,ωG) by a local isometry.
First, we let φn : (NG,ωG) 99K (Mn,ωn) be the virtually defined almost isometries coming

from the geometric convergence of (Mn,ωn) to (NG,ωG), and let nR be chosen so that the ball
BR(ωG) lies in the domain K(φn) of φn for all n > nR.

The sequence MR
n is defined as follows. Let PG be the cuspidal thin part of the geometric

limit NG, and let PR
G be the union of components of PG intersecting BR(ωG). Let P1, . . . ,Pk be the

connected components of PR
G. Given ` < µ , for each P j let γ j denote a closed horocyclic loop of

length ` in P j . Then γ j determines a parabolic annulus A j
∼= S1×R+ foliated by horocyclic loops

so that A j is the totally geodesic embedding of a 2-dimensional hyperbolic cusp. For δ ≤ `, let
A j(δ )⊂ A j denote the compact subset bounded by γ j and by the unique horocyclic loop in A j of
length δ .

Choose R(δ )≥R so that A j(δ ) lies in BR(δ )(ωG) for each j . Choosing ` sufficiently small and
taking any δ ≤ `, for all n > nR(δ ) sufficiently large we have that φn(A j(δ )) lies entirely within a
component of (Mn)<µ and represents an essential element of π1(Mn).

For such a choice of `, let γ j(n) be the homotopy class determined by φn(γ j). It follows that
the length

`Mn(γ j(n))→ 0

as n tends to ∞.
We may apply the drilling theorem to drill the curves γ j(n) out of Mn. For reference, let

Cn = γ1(n)∗ t . . .t γ j(n)∗, and let Tε
n denote the union of ε -Margulis tubes about the curves in

Cn. Given any ε < µ , there are bi-Lipschitz constants Ln → 1+, so that for n sufficiently large we
have Ln-bi-Lipschitz diffeomorphisms

ΦR,ε
n : Mn\Tε

n →M0
n \Pε

n

where M0
n denotes the complete structure on Mn\Cn, and Pε

n is the union of cusps corresponding
to Cn.

Choosing ε sufficiently small so that the ball BR(δ )(ωG) lies in N≥2ε

G , for all n sufficiently large
the composition

ΦR,ε
n ◦φn : BR(δ )(ωG)→M0

n
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gives well defined maps of the R(δ )-ball about ωG into the drilling M0
n that tend to an isometry.

Letting ωR
n = ΦR,ε

n ◦φn(ωG), we have that the manifolds (M0
n,ωR

n ) converge geometrically to the
original geometric limit (NG,ωG).

By Lemma 2.1 there is a compact core C of M that embeds in NG. Then the mappings above
give bi-Lipschitz embeddings of C into M0

n with bi-Lipschitz constant tending to 1. Let Cn denote
the images of these cores. Then the covers of M0

n corresponding to Cn converge algebraically to
M. We denote these covers by MR

n and denote again by ωR
n the lifted base-frames. Then geometric

limit (NR
G,ωR

G) of (MR
n ,ωR

n ) is a locally isometric cover of NG.
Let m be an integer sufficiently large so that Bm(ωG) contains C. Taking R in the integers

greater than m, and repeating the above procedure, we obtain a family of sequences each with
algebraic limit M whose geometric limits form a tower of covering spaces Nn

G, n≥m.
We let (N∞

G,ω∞
G) be the geometric limit of the sequence of covers (Nn

G,ωn
G). Diagonalizing,

we have in so that (Mn
in,ω

n
in) converges geometrically to N∞

G . Let Mn
in = M̂n and let

πn : (N∞
G,ω∞

G)→ (Nn
G,ωn

G)

denote the locally isometric covering projection. We obtain virtually defined almost isometries

ψn : N∞
G 99K M̂n

that converge C∞ to an isometry on K(ψn) so that ψn decomposes as the composition

ψn = Ψn
in ◦πn

where Ψn
m: (Nn

G,ωn
G) 99K (Mn

m,ωn
m) are the virtually defined almost isometries coming from the

convergence (Mn
m,ωn

m) to (Nn
G,ωn

G).
Let P be a cusp of N∞

G so that BR(ω∞
G)∩P contains a horocyclic loop γ of length ` in P.

Then for n sufficiently large, πn gives an isometric embedding of BR(ω∞
G) to the ball BR(ωn

G) and
Ψn

in ◦πn(γ) = ψn(γ) lies in a cusp of M̂n. It follows that the geometric convergence

(M̂n, ω̂n)→ (N∞
G,ω∞

G)

is geometrically type-preserving. �

We conclude this section with the following consequences of theorems of [BBES], [AC2], and
[Can3] which we record for future reference.

Proposition 2.5. (Opening Cusps) Let Mn→M be an algebraically convergent sequence in AH(N)
that is geometrically type-preserving, with geometric limit NG = H3/ΓG covered by M. Let (Mn,Pn)
be relative compact cores for Mn and let P ′

n be any subset of the rank-one cusps of Pn. Then there is a
sequence M′

n in AH(N) with the following properties:

• M′
n converges algebraically to M and geometrically to NG,

11



• CC(M′
n) is homeomorphic to Mn\P ′

n, and

• if φ ′n : NG 99K M′
n are the resulting virtually defined almost isometries then for any tame sub-

group H < ΓG on which the representations

ρn = (φ ′n)∗|H : H → π1(M′
n)

are faithful, the restrictions ρn converge strongly. �

Proof. The proof of [BBES, Theorem 3.4] allows one to approximate each geometrically finite
manifold strongly by geometrically finite manifolds with no rank-1 cusps; the argument opens
all rank-1 cusps of the limit by promoting them to rank-2 using the combination theorem and
applying Thurston’s Dehn surgery theorem to fill them (see [Brm, Thm. 7.3], [BO]). This
technique may just as easily be used to open cusps selectively; diagonalizing proves the first
assertion. The second assertion is then evident.

Observe that by a diagonal argument it suffices to show the third assertion for each tame
subgroup H. The assertion for the virtually defined almost isometries φn : NG 99K Mn follows
from an application of [Can3, Theorem 9.2] if H has limit set Ĉ, and from [AC2, Ev] when the
limit set is not all of Ĉ after observing that the induced representations (φn)∗|H are weakly type-
preserving. Since the manifolds M′

n can be chosen in arbitrarily small neighborhoods of Mn in the
strong topology, we may choose M′

n to ensure that the geometric limit of (φn)∗|H(H) is the same
as the geometric limit of (φ ′n)∗|H(H). The proposition follows. �

Notation. It will be at times convenient to work with a sequence (M′
n,ω

′
n) some of whose cusps

have been opened rather than the original geometrically type-preserving sequence (Mn,ωn) as
above. Since their qualitative features are essentially the same, we will avoid over-emphasizing
the distinction between these two sequences. As such, given η parabolic in Mn but hyperbolic in
M′

n we refer by Pε
η(M′

n) to the intersection Tε
η(M′

n)∩CC(M′
n). In the same spirit, we denote by

Pε(M′
n) the union of Pε

η(M′
n) (taken with this notational convention) over all η parabolic in Mn.

For such sequences Mn or their variants M′
n, it will be convenient to extend the virtually

defined almost isometric embeddings φn : NG 99K Mn from the compact subsets K ⊂NG to proper
embeddings of K ∪Pµ(NG) taking cusps to cusps; we refer to such extensions as extended almost
isometric embeddings.

3 A combination theorem

In this section we prove a combination theorem for tame manifolds that will play a central role
in our argument. Let M be a hyperbolic 3-manifold with finitely generated fundamental group
π1(M) and let C be a compact core of M.

12



Definition 3.1. A properly embedded incompressible surface Σ⊂M with finite topological type is said
to be peripheral if it does not intersect the core C.

Whether a surface is peripheral depends on the choice of compact core, but later we will
give several characterizations of those properly embedded disks or incompressible annuli which
are properly homotopic to a peripheral surface. We remark that peripheral surfaces separate
since every closed curve M can be homotoped into the core C. Later we will need to consider
peripheral surfaces which are not connected but we will assume without further reference that
no component of a peripheral surface is separated from the core by a different component of the
same surface. In other words, the peripheral surfaces Σ we consider are always contained in the
closure of the component of M \Σ which contains the core.

Proposition 3.2. Let Σ be a peripheral surface in M and assume that M is tame. Let V be the compo-
nent of M \Σ containing the core C, let U1, . . . ,Uk be the components of M \V, and set U = ∪iUi .

1. The inclusions V ↪→M and Σ ↪→U are homotopy equivalences.

2. There is an exhaustion of M by nested compact cores C′
i such that the inclusion C′

i ∩Σ ↪→ Σ is a
homotopy equivalence. Moreover C′

i ∩V is a core of V for all i.

3. U is homeomorphic to Σ×R+.

We recall that a manifold can be exhausted by (relative) compact cores if there exists a se-
quence (Ci) of (relative) compact cores with Ci ⊂Ci+1 and with M = ∪iCi . Before we start the
proof of Proposition 3.2 we recall the following crucial observation:

Lemma 3.3. Let C0 ⊂C1 be compact cores of M, then C0 is a compact core of C1 and the surface ∂C1

is incompressible and acylindrical in M \C0. �

Proof of Proposition 3.2. We prove the first claim of Proposition 3.2. Let Σ1, . . . ,Σk be the com-
ponents of Σ, i.e. Σi = ∂Ui . From the Seifert-van Kampen theorem we deduce that

π1(M) = π1(V)∗π1(Σ1) π1(U1)∗π1(Σ2) . . .∗π1(Σk) π1(Uk) (3.1)

The peripheral surface Σ is by definition incompressible, and this implies that π1(V) injects into
π1(M); π1(V) surjects because V contains the core C. In particular, V is homotopy equivalent to
M.

Moreover, we deduce that the action of π1(M) on the Bass-Serre tree associated to (3.1) has
a global fixed-point. In particular, we obtain that the homomorphism π1(Σi) → π1(Ui) is an
isomorphism. Proposition 3.2 (1) follows.

Before beginning the proof of (2) we establish the following lemma.
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Lemma 3.4. Let Σ be a properly embedded, finite type, incompressible surface in M and let C1,C2 be
cores of M with C1 ⊂C2. Assume that we have a subsurface Σ0 ⊂ Σ which is homotopy equivalent to
Σ and such that

C1∩Σ⊂ Σ0 ⊂C2∩Σ.

Then there is a core C′
2 in Mi with C1 ⊂C′

2 and with Σ0 = C′
2∩Σ.

Proof. Up to replacing C2 by Nδ (C2) = {x ∈ M|d(x,C2) ≤ δ} for some δ > 0 we may assume
that the intersection Σ∩C2 is a compact surface X with boundary ∂X ⊂ Σ. By assumption, the
surface X contains Σ0.

If some boundary component of X is compressible in Σ \Σ0, then there is a boundary com-
ponent γ ⊂ ∂X of X which bounds a disk D⊂ Σ\Σ0 such that D∩∂X = γ .

Lemma 3.3 shows that there is a disk D′ ⊂ ∂C2 such that D∪D′ is the boundary of a 3-cell B
which either is contained in C2\C1 or in M\C2. If B⊂C2\C1, then set C2 =C2\Nδ (B) for δ > 0
very small, else set C2 = C2∪Nδ (B). The submanifold C2 is isotopic in M to C2, thus it is a core;
further, we have C1 ⊂C2. Moreover, there are fewer curves in ∂ (C2∩Σ) that are compressible in
Σ\Σ0 than in ∂X.

After finitely many repetitions of this process we obtain a core, (which we again call C2) with
C1 ⊂C2 and such that all components of ∂ (C2∩Σ) are incompressible in Σ\Σ0.

Let Σ1 be the component of Σ∩C2 which contains Σ0.
Suppose that Σ∩C2 \Σ1 is not empty and let A be one of its components. The surface A is

an annulus which is properly embedded in (C2,∂C2) and which does not intersect C1. Lemma
3.3 implies that there is an annulus A′ ⊂ ∂C2 with ∂A′ = ∂A such that A∪A′ bounds a solid torus
T ⊂C2\C1. As above, there is δ > 0 very small such that the set

C2 = C2\{x|d(x,T) < δ}

is isotopic to C2 in M, contains C1 and Σ1 and the number of components of Σ∩C2 is strictly
smaller than that of Σ∩C2.

Repeating this process finitely many times we obtain a core which we call again C2, which
contains C1, with S0 ⊂C2∩Σ and such that Σ∩C2 is homotopy equivalent to Σ. Now we can
isotope C2 in a small neighborhood of Σ to a core C′

2 with the desired properties. �

We continue with the proof of Proposition 3.2 (2). Let (Σi) be a sequence of compact subsur-
faces of Σ which are homotopy equivalent to Σ, with Σi ⊂ Σi+1 and with Σ = ∪iΣi .

Since M is assumed to be tame, there is an exhaustion by compact cores

C = C0 ⊂C1 ⊂ . . . .

There is some i1 with Σ1 ⊂Ci1. Lemma 3.4 shows that there is a core C′
1 with C0 ⊂C′

1 and with
C′

1∩Σ = Σ1. Now there is i′2� 1 such that C′
1∪B1(C0)⊂Ci′2

. Fix n2� 1 with Ci′2
∩Σ⊂ Σn2 and let
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i2 > i′2 be such that Σn2 ⊂Ci2∩Σ. As above we find a core C′
2 with Ci′2

⊂C′
2 and with Σn2 =C′

2∩Σ.
Proceeding inductively, we find an exhaustion of M by compact cores C0 ⊂C′

1 ⊂C′
2 ⊂ . . . with

C′
j ∩Σ = Σn j for all j ≥ 1.

It remains to prove that C′
j ∩V is a core of V for all j . By construction, the core C = C0 is

contained in C′
j for all j . In particular, we deduce that the homomorphism π1(C′

j ∩V)→ π1(V)
is surjective. The surface Σ∩C′

j is incompressible in C′
j , hence the homomorphism π1(C′

j ∩V)→
π1(C′

j) = π1(M) is injective. The claim follows now from part (1).
Finally we prove Proposition 3.2 (3). Without loss of generality we may now assume that Σ,

and hence U , is connected. Moreover, it follows from [Can2, Propositon 3.2] that the cover MΣ
of M corresponding to the group π1(Σ) is also tame. In particular, we deduce from (1) that the
inclusion of U into MΣ is a homotopy equivalence. Let C′

i be cores of MΣ as in (2) and set Ki =
C′

i ∩U and Σi = C′
i ∩∂U ⊂ ∂Ki . It follows from (2) that Ki is a core of MΣ. In particular, ∂Ki \Σi

is incompressible in Ki . We deduce that the pared manifold (Ki ,∂Σi) is a (relative) compression
body with incompressible boundary. This implies that Ki = Σi× [0,1] for all i. We deduce that U
is homeomorphic to Σ×R+. �

Our strategy in the proof of Theorem 1.1 will be to decompose the algebraic limit into tame
pieces along essential surfaces. This approach is motivated by the following result.

Theorem 3.5. Let M be a complete hyperbolic 3-manifold with finitely generated fundamental group
π1(M) and assume that Σ⊂M is a properly embedded, incompressible, two-sided finite type surface. If
for every component U of M \Σ the manifold MU = H3/π1(U) is tame then M is tame.

Proof. Let M and Σ be as in the statement of the theorem. By an induction argument, we can
assume that Σ has only one component. We are going to show that M admits an exhaustion by
nested compact cores. Tameness of M follows then from the main result of [Sou].

The complement M\Σ of Σ has either only one component U or two components U1 and U2.
We treat only the second case, the former is analogous. Let MUi be the cover of M determined by
Ui ; Ui lifts homeomorphically to MUi and the embedding Ui ↪→ MUi is a homotopy equivalence.
In particular, every core of Ui is a core of MUi . Choose a core CUi of Ui . The surface ∂U i ⊂
MUi projects homeomorphically onto Σ and does not intersect the core CUi ; in particular it is
peripheral.

Let K ⊂M be any compact set and let Ki = K∩Ui . By the proposition 3.2 there is a compact
core Ci of MUi such that Ki ⊂Ui ∩Ci , such that Ci ∩Ui is a core of Ui , such that Ci ∩Σ is homotopy
equivalent to Σ and such that

C1∩∂U1 = C1∩Σ⊂C2∩Σ = C2∩∂U2.

This implies that C1∩C2 is the surface C1∩∂U1; the embedding of this surface into Σ is a homo-
topy equivalence.
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Set C = C1∪C2; we have that π1(C) = π1(C1) ∗π1(C1∩C2) π1(C2). Further, we have that the
following diagram commutes:

π1(C)

��

// π1(M)

��
π1(C1)∗π1(C1∩C2) π1(C2) // π1(MU1)∗π1(Σ) π1(MU2)

where the arrow below is given on each factor by the inclusion of Ci in MUi ; hence it is an
isomorphism. The vertical arrows are isomorphisms too, so we obtain that the homomorphism
π1(C) → π1(M) is an isomorphism; we have proved that C is a core of M. By construction it
contains the compact set K. As K is arbitrary, this implies that M admits a nested exhaustion by
compact cores. Again the main result of [Sou] implies that M is tame. �

We conclude this section with the following Lemma characterizing which disks and annuli
are isotopic to peripheral surfaces.

Lemma 3.6. Let M be a hyperbolic 3-manifold with finitely generated non-virtually abelian fun-
damental group, C a compact core of M and Σ a properly embedded disk or a properly embedded
incompressible annulus. Then the following are equivalent:

1. Σ is properly homotopic to a peripheral surface.

2. There is a component V of M \Σ such that the inclusion V ↪→M is a homotopy equivalence.

3. There is a component V of M \Σ such that the inclusion Σ ↪→M \V is a homotopy equivalence.

4. There is a component V of M \Σ with M \V = Σ×R+.

A properly embedded disk or a properly embedded incompressible annulus for which one of these con-
ditions fails is said to be essential.

Proof. The arguments in the proof of the first part of Proposition 3.2 show that the implications
(1)⇒(2)⇒(3) hold.

The implication (3)⇒(4) follows when we apply Proposition 3.2 (3) to the cover of M deter-
mined by Σ; the key point is that the cover of M corresponding to Σ is tame because π1(Σ) is
either trivial or abelian.

The implication (4)⇒(1) is obvious. �
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4 The proof of the main theorem

In this section we give the proof of the main theorem assuming the conclusion of Proposition 7.1
below, whose proof we defer to section 7.

Theorem 1.1. Let M be an algebraic limit of geometrically finite hyperbolic 3-manifolds. Then M is
tame.

We remind the reader that after [BBES], the remark preceding Lemma 2.1, and Theorem 2.3,
we may assume that the following condition holds here and in the sequel.

Working Assumption. The hyperbolic 3-manifold M satisfies the following conditions: M has empty
conformal boundary, M has a compact core C homeomorphic to a compression body, and M is the
algebraic limit of a sequence (Mn) of geometrically finite manifolds that converge in a geometrically
type-preserving manner to a limit NG covered by M.

In the remaining sections, we give an interpolation argument with simplicial hyperbolic sur-
faces to show the following key proposition which we take as our jumping off point for the proof
of Theorem 1.1. The following proposition is proven in section 7.

Proposition 7.1. Assume the geometric limit NG is not a product. Then there is a properly embedded
finite type surface S ↪→ NG so that one component E of NG \S is homeomorphic to S×R+ and the
surface Seither is compressible or contains an essential simple closed curve γ that is homotopic into a
cusp in NG but not entirely within E.

We now prove Theorem 1.1.

Proof of Theorem 1.1. It follows from Thurston’s hyperbolization theorem that a manifold is
tame if it has finitely generated fundamental group and covers a tame hyperbolic manifold of
infinite volume (see [Can2, Proposition 3.2]). In particular M is tame if NG is a product, i.e. NG

is homeomorphic to a trivial interval bundle over a compact surface. Otherwise, we satisfy the
hypotheses of Proposition 7.1.

If the surface S given by Proposition 7.1 is compressible, let CS be the relative compression
body associated to ∂ (NG \E) = S. By abuse of notation we denote also by CS the submanifold
CS∪E which is homeomorphic to CS\Sby the product structure of E.

If CS is a handlebody, then NG, and hence M, is tame, so we consider the case that CS has
non-empty interior boundary ∂intCS. Let D be a collection of disks in CS so that CS\D is
homeomorphic to ∂intCS×R. By construction every component V of NG \D contains at least
one component ∂VCS of the interior boundary of CS. Moreover, the surface ∂VCS divides V and
one of its two components, call it EV , is homeomorphic to ∂VCS×R. As a component of the
interior boundary of CS, the surface ∂VCS is incompressible in NG and hence determines a tame
end of the cover NV = H3/π1(V) of NG by Bonahon’s theorem. In other words, the manifold V
lifts homeomorphically to NV and the complement of V \EV in NV is homeomorphic to ∂VCS×R.
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The covering NV → NG has infinite degree because D is a non-empty collection of essential
disks. Thus the restriction of this covering to NV \ (V \EV) cannot have finite fibers. By the
covering theorem, we conclude that not all relative ends of NV contained in the end NV \(V \ EV)
can be degenerate. It follows that if V is a component of NG \D then the cover NV of NG corre-
sponding to V has non-empty conformal boundary.

Now let D ′ be the preimage of D in the algebraic limit M. Only finitely many disks in D ′

intersect the core and, by definition, this implies that only finitely many disks in D ′ are essential.
If a connected component D⊂D ′ is not essential then it must separate M, and thus a component
of M \D is a ball by Lemma 3.6. The complement of the union of such balls is a submanifold
of M, which we denote by MD , whose inclusion in M is a homotopy equivalence. We denote by
D ′

ess⊂D ′ the union of disks in the subcollection consisting of those that are essential in M.
Let U1, . . . ,Ul be the connected components of MD \D ′

ess, and let M̃ j = H3/π1(U j). We
remark that by construction each of the covers M̃ j is the algebraic limit of a sequence of geomet-
rically finite groups and that the image π(U j) of the component U j is contained in a component
Vj of NG \D . As we proved above, the conformal boundary of NVj is non-empty and thus that
the conformal boundary of M̃ j is non-empty a fortiori. The main theorem of [BBES] implies
that M̃ j is tame. Tameness of M follows now from successive applications of Theorem 3.5. This
concludes the proof of Theorem 1.1 in the case that the surface S is compressible.

Assume now that S is incompressible. Then there is a curve γ in Swhich can be homotoped
into a cusp of NG but such that this homotopy cannot lie entirely within the tame end E. We
face the difficulty that the cusp corresponding to γ could nevertheless be contained in E; we
assume first that this is not the case. Then there is a properly embedded annulus A' R×S1 ⊂
NG with A∩E = R+ ×S1 and such that the core of A represents a parabolic element in NG

while its corresponding cusp does not intersect E. Replacing the collection D of disks in the
above argument by the annulus A and replacing the preimages of D in the algebraic limit by the
preimages of A (which may either be annuli or disks in this case), the proof may be carried out
exactly as before.

Assume now that the cusp corresponding to γ lies within E. We choose a connected sub-
manifold B of NG that contains the end E and the core C and has finitely generated fundamental
group. Let NB be the cover of NG determined by the image of π1(B) into π1(NG). Since π1(NB) is
finitely generated, it is residually finite by Selberg’s Lemma. Thus, there is a finite normal cover
N′

B →NB such that a component of the pre-image E′ of E is a tame incompressible end of N′
B and

such that the corresponding component S′ of the pre-image of S contains a curve which can be
homotoped into a cusp of N′

B that is not contained in E′.
By construction, the algebraic limit M covers NB and therefore there is a finite cover M′ of

M which covers N′
B. The proof above shows that M′ is tame. We claim that this implies that M

is tame. If X is a compact submanifold of M with pre-image X′ in M′ then π1(M \X) is a finite
extension of π1(M′ \X′) which is finitely generated since M′ is tame and X′ is compact. Therefore
π1(M \X) is finitely generated for any compact submanifold X. By a theorem of Tucker (see

18



[Tck]), we may conclude that M is tame. This concludes the proof of Theorem 1.1. �

The remaining sections of the paper are devoted to the proof of Proposition 7.1.

5 Simplicial hyperbolic surfaces

Let S̄ be a closed surface, V ⊂ S̄ a finite collection of points and S= S̄− V . A continuous
map φ : S→ N into a hyperbolic 3-manifold is a pre-simplicial hyperbolic surface if the following
conditions hold:

• The boundary of every small disk centered at a point in V is mapped by φ to an essential
curve in N.

• There is a triangulation T of S̄which contains V in the set of vertices such that every face
of T is mapped by φ to a totally geodesic triangle.

See Hatcher [Hat] for a precise definition of triangulation. We remark that it follows from the
definition that every pre-simplicial hyperbolic surface is proper. A pre-simplicial hyperbolic
surface S in N is a simplicial hyperbolic surface if the cone angle at each vertex of T that does
not belong to V is at least 2π . If φ : S→ N is a simplicial hyperbolic surface we will often say
that S itself is a simplicial hyperbolic surface in N. The distance induced on the universal cover
of a simplicial hyperbolic surface S in N is complete and has curvature ≤ −1 in the sense of
Alexandroff, hence [Bon, Can1] we have

vol(S)≤ 2π|χ(S)|.

In the cusp-free setting, Canary and Minsky showed that each component of the convex
core boundary of a complete hyperbolic 3-manifold N admits an approximation by simplicial
hyperbolic surfaces [CM]. The cusped case is similar.

Proposition 5.1. Let S be a component of the boundary ∂CC(N) of the convex core CC(N) of
a geometrically finite hyperbolic manifold N. Then for every ε > 0 there is a simplicial hyperbolic
surface X which is properly homotopic to S by a homotopy whose tracks are all shorter than ε .

Simplicial hyperbolic surfaces are useful because simple moves performed on their associated
triangulations can be translated to homotopies through simplicial hyperbolic surfaces. A homo-
topy (Xt) with Xt simplicial hyperbolic for all t is said to be an interpolation. The following
propostion is due to Canary [Can3, Section 5] and Canary-Minsky [CM, Proposition 4.5].

Proposition 5.2. Let N be a complete hyperbolic 3-manifold and let X be a simplicial hyperbolic
surface in N:
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1. If X is incompressible with no accidental parabolics and X′ is a second simplicial hyperbolic
surface in N homotopic to X, then there is an interpolation (Xt)t∈[0,1] with X0 = X and X1 = X′.

2. Suppose that X is either compressible or has accidental parabolics or both. Then, there is for
every ε > 0 an interpolation (Xt)t∈[0,1] with X = X0 such that lX1(γ) < ε for some essential
non-peripheral curve γ which is either compressible or represents a parabolic element in N.

Recall that an essential non-peripheral simple closed curve γ on a surface X in a hyperbolic
manifold N is an accidental parabolic if it can be homotoped into a cusp of N.

The following estimates on the geometry of simplicial hyperbolic surfaces are probably well-
known. We include them for completeness.

Lemma 5.3. There is an ε > 0 such that if X is a simplicial hyperbolic surface in a hyperbolic manifold
N and η ⊂ X is a simple closed curve with `X(η)≤ ε for which η intersects every compressible curve
in X essentially, then the set {x∈ X|dX(x,η)≤ 1} is an embedded annulus.

Proof. It suffices to show that every component A of {dX(·,η)≤ 1}\η is an annulus. We choose
ε sufficiently small such that A is contained in a component of the µ -thin part of N. In particular,
the image of π1(A) into π1(N) is abelian. Convexity of the distance function on the universal
cover of Sguarantees that if A fails to be an annulus then the image of π1(A) into π1(X) contains
a free group. We deduce that there is a curve γ in A which is essential in X but compressible in N
contradicting the assumption on η . �

Now let X be a simplicial hyperbolic surface in a hyperbolic 3-manifold M and let ε < µ be
such that every compressible curve in X has length at least 4ε . Observe that every component
A of X<ε , ε -thin part of X, is contained in a component of N<ε . If A fails to be an embedded
annulus then there is a point x∈ A and two loops γ and η based at x with length less than ε so
that γ and η generate a free subgroup of π1(X). As in the proof of Lemma 5.3 we have that both
elements commute in π1(N) and hence their commutator [γ,η ] is essential in X, compressible in
N and has length less than 4ε ; this yields a contradiction, resulting in the following.

Lemma 5.4. For all ε > 0 there is an ε ′ > 0 such that for every simplicial hyperbolic surface X in
a hyperbolic manifold N with all compressible curves of length at least ε , the ε ′-thin part of X has at
most 3

2|χ(X)| components and each component is an annulus. �

Finally, we establish the following uniform relative diameter bound.

Lemma 5.5. Let (Mn,ωn) be a sequence of framed hyperbolic manifolds which converges geometrically
type-preserving to a manifold (NG,ωG). For every d, ε and A there is a constant D such that for every
sequence (Xn) of simplicial hyperbolic surface with |χ(Xn)| ≤ A, with Xn∩Bd(ωn) 6= /0 and with
lXn(γ)≥ ε for every essential curve γ ⊂ Xn which is either compressible or homotopic into P(Mn) then
we have Xn ⊂ BD(ωn)∪Pε(Mn).
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Proof. To begin with we choose δ to be less than ε , the Margulis constant µ and the constant
provided by Lemma 5.4.

The claim of the lemma follows if we can bound independently of n the diameter of the
complement Xn \Pδ (Xn) of the cuspidal part Pδ (Xn) of Xn, where the cuspidal part is the union
of all unbounded components of X<δ

n (recall we will use the notation Pδ = Pδ (Xn) when there
is no danger of confusion). Seeking a contradiction assume that this is not the case and fix for
all n points xn ∈ Xn∩Bd(ωn) and yn ∈ Xn \Pδ such that dXn(xn,yn) → ∞ when n→ ∞. Choose
also a minimal geodesic γn : [0,d(xn,yn)] → Xn and note that the length of γn[0,dXn(xn,yn)]∩Pδ

is bounded from above by a constant depending on δ and on the number of components of Pδ

because γn minimizes length.
Let I1, . . . , Ik be the segments in [0,d(xn,yn)] which parametrize the crossings of γn with the

components of the δ -thin part of Xn; the minimality of γn implies that every component is
crossed at most once. We set I j = [t j

n,s
j
n] with t1

n < s1
n < t2

n < s2
n < · · ·< tk

n < sk
n; note that γn(sk

n) ∈
ε5− thin(Xn) if si

k = d(xn,yn). The estimate vol(Xn) ≤ 2π|χ(Xn)| ≤ 2πA and a simple volume
comparison argument [Th1, Bon] imply that there is some uniform constant B with

d(xn,yn)−
k

∑
j=1

|sj
n− t j

n| ≤ B

for all n. In particular, there is some m with limn |sj
n− t j

n| = ∞; we take m minimal with this
property. Thus (t j

n)n is bounded, say convergent to t∞ ∈ R after passing to a subsequence, and
limnsj

n = ∞. The lower bound on the length of compressible curves together with a comparison
argument shows that for all τ ∈ (t j

n,
1
2(t j

n +sj
n)) we have

injMn
(γn(τ))≤ injXn

(γn(τ))≤ δ

cosh(τ− tn)
. (5.2)

Up to passing to a subsequence, we may assume that the maps φ−1
n ◦ γn converge to a 1-Lipschitz

map γ∞ : [0,∞) → NG with γ∞(0) ∈ Bd(ωG). Moreover, we have that γ∞(t∞,∞) is contained in a
single component V of the δ -thin part of NG which is unbounded by (5.2).

The uniform length decay property of the sequence (Mn) implies that the component of the
δ -thin part of Mn containing γn

(
1
2

(
t j
n +sj

n

))
is unbounded for all n, which implies that that the

core curve of the corresponding component of the δ -thin part of Xn is an accidental parabolic.
Equation (5.2) contradicts the lower bound for the length of those curves. �

We remark that Lemma 5.5 readily applies to sequences Xn taken in filled manifolds M′
n ob-

tained from Proposition 2.5 with the notational convention following the proof of the Proposi-
tion. (Note that this application fails without the notation convention).
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6 Pulling down

In this section we employ the geometrically type-preserving assumption to generalize the inter-
polation arguments of Canary and Minsky [CM]. We remind the reader that we argue always
under the working assumption of section 4. We also let C⊂ M be a compact core that embeds
in NG (whose existence is guaranteed by Lemma 2.1) and let Cn = φn(C) ⊂ Mn be compact cores
obtained as the images of C under the almost isometries φn : NG 99K Mn. In this section, we will
prove the following.

Proposition 6.1. Either the geometric limit NG is a product, or there is a properly embedded finite
type surface S↪→ NG so that one component E of NG\Sis homeomorphic to S×R+ and such that

• the virtually defined almost isometries φn : NG 99K Mn extend to proper embeddings φE
n of E,

and

• φn(S) is either compressible or contains an essential curve which is homotopic into a cusp of Mn

but not entirely within φE
n (E).

Before beginning the proof, we fix once and for all a positive constant ε0 less than the Margulis
constant and the constants provided by Lemma 5.3 and Lemma 6.2 below, and such that

Cn∩M<ε0
n = /0

for all n.

Lemma 6.2. There is ε > 0 such that for all n we have `Mn(γ) > ε for each curve γ ⊂Mn\Cn which
is either compressible or homotopic into a cusp in Mn but not in Mn\Cn.

Proof. If γ is compressible it bounds a necessarily non-embedded, ruled disk D. In particular the
length of γ is bigger than the area of D. The disk D intersects the core Cn essentially. Since the
cores Cn are chosen in a uniform way, there is a uniform lower bound to the area of every such
essential disk; this yields the desired uniform bound. If γ can be homotoped into a cusp, we can
realize this homotopy by a ruled annulus and the same argument applies. �

We pause to describe the basic strategy of the proof of Proposition 6.1. We realize the surface
S as a limit of embedded surfaces in Mn, each of which is obtained from an interpolation of
simplicial hyperbolic surfaces using results of section 5. In the case that the convex core boundary
of Mn has a compressible component, Propositions 5.2 and 5.5 allow us to interpolate from
the boundary of the convex core in to surfaces that converge geometrically after passing to a
subsequence. These surfaces can be obtained by an interpolation that does not cross the core,
and we may take a nearby embedded convergent representatives of the approximates and of the
limit. The same method locates such embedded surfaces farther and farther from the basepoint,
and methods of [Sou] provide that their limits give an exhaustion of a tame end of NG.
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A variant of this method using Bonahon’s theorem treats the case when ∂CC(Mn) contains
a component with an accidental parabolic. Unfortunately, we cannot always assume CC(Mn)
contains such boundary components, so to apply methods of section 5 we open certain of the
cusps of Mn to obtain manifolds for which the same arguments can be fruitfully carried out.

Remark: We note that in either case the restrictions of the geometric limit mappings

φn|S: S→Mn

that limit to the identity mapping idS can range in infinitely many different homotopy classes
with respect to markings on Mn. Indeed, this possibility represents a central difficulty in our
argument, and represents the primary reason for seeking first a tame end of the geometric limit
rather than considering the algebraic limit alone.

The proof of Proposition 6.1 divides into three cases depending on the properties of the
pared manifold (Mn,Pn) corresponding to Mn. The sequence (Mn) will be replaced in some
cases by a sequence (M′

n) with associated pared manifold (Mn,P̂n) with P̂n ⊂ Pn as provided
by Proposition 2.5. Recall that (by our notational convention following Proposition 2.5) given
a curve η homotopic into a rank-1 cusp of Mn, we abuse notation and denote by Pε0

η = Pε0
η (M′

n)
the intersection of the component of the ε0-thin part corresponding to η of M′

n with the convex
core of M′

n. Similarly, we denote by Pε0(M′
n) the union of the cuspidal ε0-thin part of M′

n with
all components Pε0

η where η corresponds to components of P̌n = Pn \P̂n. By construction of
the manifolds M′

n, for each η corresponding to a component of P̌n we have ∂Pε0
η is an annulus

where ∂Pε0
η is the intersection of the usual topological boundary of the η -Margulis tube Tε0

η with
the interior of the convex core of M′

n.
We have moreover almost isometric maps guaranteed by Proposition 2.5 pushing forward the

core Cn of Mn we obtain a core of M′
n which we denote again by Cn. These almost isometric maps

can be extended to homeomorphisms; thus Proposition 6.1 follows if we prove the same claims
for the sequence (M′

n). We may moreover assume that for all n we have `Mn(γ) > ε0 for each curve
γ ⊂M′

n\Cn which is either compressible or homotopic into Pε0(M′
n) in M′

n but not in M′
n\Cn.

Notation. The relevant data recorded by the parabolic locus Pn are the homotopy classes of
closed curves in Mn that represent parabolic elements of π1(Mn). We warn the reader that we will
frequently abuse the distinction between an essential curve η ⊂Pn and its free homotopy class.

We now commence the proof of Proposition 6.1. As a warm-up we consider the following
special case; many of its arguments are repeated later in the proof.

Case 1: There is an identification (Mn,Pn) ' (Sn× [−1,1],∂Sn× [−1,1]tP+
n tP−

n ) where
Sn is a compact surface, P±

n ⊂ Sn×{±1} and such that P+
n 6= /0 6= P−

n and representatives in Sn of
each component P+

n and each component of P−
n intersect essentially.

Let (M′
n) be the sequence of geometrically finite manifolds with associated pared manifold

(Sn× [−1,1],∂Sn× [−1,1]) provided by Proposition 2.5 and denote by ∂±CC(M′
n) the two com-

ponents of the boundary of the convex core of M′
n. There are, by Proposition 5.1, simplicial
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hyperbolic surfaces X±1
n homotopic to ∂±CC(M′

n) by a homotopy with very short tracks. In
particular we may assume that

max
η⊂P±

n

lX±1
n

(η)≤ ε0

The surfaces X±1
n are incompressible and have no accidental parabolics and therefore we obtain

from Proposition 5.2 an interpolation (Xt
n)t∈[−1,1] joining X−1

n and X1
n by simplicial hyperbolic

surfaces. By the assumption that the components of P±
n intersect each other and Lemma 5.3 we

have
min

η⊂P−
n

lX1
n
(η)≥ 1.

In particular there is tn with min
η⊂P−

n
lXtn

n
(η) = ε0; set Xn = Xtn

n and let ηn be a curve in Xn which
can be homotoped into P−

n with lXn(ηn) = ε0.

Lemma 6.3. There is a D > 0 such that for all n there is a properly embedded surface Sn ⊂ BD(ωn)∪
Pε0(M′

n) which does not intersect int(Pε0
ηn), such that Sn∪∂−CC(M′

n) bound a product region and such
that Sn∩∂Pε0

ηn contains a curve ηSn homotopic to ηn within Pε0
ηn.

Proof. Since the surface Xn is incompressible and homotopic to an embedded surface, a theorem
of Freedman-Hass-Scott [FHS] produces an embedded surface which is close to Xn. For these
surfaces to be of use to us, however, we must show that they may be taken to lie within a uniform
ball at ωn; after our construction of the surface Sn most of the proof will be devoted verifying
that they may be so taken. As a first step we observe that the diameter of Xn∩∂Pε0

ηn is bounded
by 2|χ(Xn)|/ε2

0 ; hence it is contained in an annulus Ān ⊂ Pε0
ηn whose diameter is bounded by the

same constant.
Let η ′

n be the geodesic in Xn corresponding to ηn. The curves ηn and η ′
n are homotopic

in Pε0
ηn; choose a cylinder an realizing this homotopy. Cutting open Xn along η ′

n and gluing
an to the boundary curves so obtained, we get a surface Zn which is properly homotopic to
the embedded incompressible surface ∂−CC(M′

n) \η ′
n. In particular, applying [FHS] there is a

properly embedded surface Z′n contained in N1(Zn), properly homotopic to ∂−CC(M′
n)\η ′

n and
with Z′n∩ ∂Pε0

ηn ⊂ Ān. Up to slightly perturbing Z′n we can assume that Z′n∩ ∂Pε0
ηn is a finite

collection of simple disjoint curves. These curves are either compressible or homotopic to ηn.
In particular, there is a well-defined compact subsurface Z′′n ⊂ Z′n such that π1(Z′′n) surjects onto
π1(Z′n), whose boundary consists of two curves in Z′n∩∂Pε0

ηn and such that every other component
of Z′′n ∩∂Pε0

ηn is compressible.
Arguing essentially as in the proof of Lemma 3.4, we can isotope Z′′n fixing its boundary to

an embedded surface Z̄n contained in a small neighborhood of Z′′n ∪ Ān whose interior does not
intersect ∂Pε0

ηn. The boundary curves of Z̄n bound a compact annulus An ⊂ Ān and we set Sn =
Z̄n∪An. Observe that the bound on the diameter of Ān implies that there is D1 with Sn⊂ND1(Xn)
for all n.

The surfaces Sn and ∂−CC(M′
n) are disjoint, incompressible and homotopic, and hence bound

a product region [Wald]. Moreover, Sn does not intersect int(Pε0
ηn) and Sn∩∂Pε0

ηn contains a curve
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ηSn homotopic to ηn within Pε0
ηn. It remains to show that the surfaces Sn are contained in a ball

of uniform radius centered at ωn.
We show first that Sn intersects a ball of uniform radius. If Sn does not intersect Cn then the

assumption that Cn∩M<ε0
n = /0 implies that ηSn can be homotoped into ηn without traversing

the core. This implies that Sn separates the core from Pε0
ηn. By the geometrically type-preserving

assumption, the distance between Cn and Pε0
ηn is bounded; in particular, there is some D2 such that

Sn∩BD2(ωn) 6= /0 for all n. This implies that the simplicial hyperbolic surface Xn intersects the
ball BD1+D2(ωn) for all n; Xn is incompressible and the choices of ε0 and of Xn itself ensure that for
every curve η ⊂ X homotopic into P+

n ∪P−
n we have lX(η)≥ ε0. We deduce then from Lemma

6.3 and Lemma 5.5 that there is a constant D3 with Xn ⊂ BD3(ωn)∪Pε0(M′
n) for all n. The claim

follows when we set D = D3 +D1. �

We can now conclude the proof of Proposition 6.1, always under the assumption that we are
in Case 1. To begin with, we choose an irreducible and atoroidal submanifold V of NG which
contains B2D(ωG)∪Pε0(NG), with V \Pε0(NG) compact. For n large enough, the extended almost
isometric embedding φn (see section 2) is defined on V and its image contains the embedded
surface Sn provided by Lemma 6.3. By construction, each of the surfaces Sn is incompressible and
embedded. This implies that, up to passing to a subsequence, the surfaces φ−1

n (Sn) and φ−1
m (Sm)

are homotopic for all m and n since V is homeomorphic to the interior of an irreducible and
atoroidal compact manifold and such manifolds contain only finitely many homotopy classes of
properly embedded surfaces with Euler-characteristic less than χ(∂C); set S= φ

−1
1 (S1).

The cover H3/π1(S) of NG determined by S is tame by Bonahon’s theorem [Bon] and the
surface φn(S) is incompressible for all n. This implies that the representations of π1(S) induced by
(φn)∗|π1(S) converge strongly to the representation given by the inclusion of π1(S) into π1(NG), by
Proposition 2.5. In particular, the convex cores of the manifolds M′

n = H3/(φn)∗(π1(S)) converge
to the convex core of H3/π1(S) (see, e.g., [KT, Kl]).

By assumption, the algebraic limit M has empty domain of discontinuity which implies that
∂CC(M′

n) is farther and farther away from the base-frame ωn. We deduce that H3/π1(S) has empty
conformal boundary and thus each of its relative ends is degenerate. Therefore, the covering
H3/π1(S) → NG is trivial by the covering theorem, after an application of [JM, Lemma 3.6] as
before. We have proved that the geometric limit is homeomorphic to S×R and thus Proposition
6.1 follows if we are in Case 1.

In the case that (Mn,Pn) = (S× [0,1],∂S× [0,1]) we simply choose any simplicial hyperbolic
surface that intersects the core. The rest of the proof remains the same.

Case 2: Every component of ∂CC(Mn) is quasi-Fuchsian.
We may choose a maximal subcollection P̂n of Pn such that a component Sn of ∂Mn\P̂n

is either compressible or contains an essential curve which can be homotoped to a curve in
Pn in Mn but not in Sn and set P̌n = Pn \ P̂n. Let (M′

n) be the sequence of geometrically
finite hyperbolic manifolds with associated pared manifold (Mn,P̂n) provided by Proposition
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2.5 and identify Sn with a component, which we also denote by Sn, of ∂CC(M′
n). There is by

Proposition 5.1 a simplicial hyperbolic surface X0
n in M′

n which is properly homotopic to Sn by a
homotopy whose tracks are all very short and Proposition 5.2 yields an interpolation (Xt

n)t∈[0,1]
beginning in X0

n and such that there is an essential curve γ ⊂Sn which is either compressible or
homotopic to P̂n with lX1

n
(γ)≤ 1. From the assumption that ε0 is less than the constant provided

by Lemma 5.3 and from the fact that X0
n is close to the boundary of the convex core we obtain

max
η⊂P̌n

lX0
n
(η)≤ ε0, min

η⊂P̌n

lX1
n
(η)≥ ε0

As above, we find tn with min
η⊂P̌n

lXtn
n
(η) = ε0; set Xn = Xtn

n and choose ηn ⊂ P̌n with lXn(ηn) =
ε0. We claim

Lemma 6.4. Either we are in Case 1 or there is D > 0 such that for all n there is a properly embedded
surface Sn ⊂ BD(ωn)∪Pε0(M′

n) which does not intersect int(Pε0
ηn), such that Sn∪Sn bound a product

region and such that Sn∩∂Pε0
ηn contains a curve ηSn homotopic to ηn within Pε0

ηn.

Proof. Not only the statement but also the proof of this lemma is very similar to the proof of the
Lemma 6.3. We only sketch the proof, pointing out the differences.

The construction of the embedded surface Sn is exactly as above: Gluing a cylinder between
ηn ⊂ P̌n and the corresponding geodesic η ′

n in Xn to Xn\η ′
n we obtain a proper surface Zn which

is incompressible and homotopic to an embedded surface Z′n. We then obtain Sn by gluing the
two cusps of Z′n corresponding to ηn together. As above we obtain that Sn does not intersect
int(Pε0

ηn) and Sn∩ ∂Pε0
ηn contains a curve ηSn homotopic to ηn within Pε0

ηn. However, since the
surface Sn may be compressible we cannot apply directly the Waldhausen co-bordism theorem to
Sn and Sn. We apply it instead to the two surfaces Z′n and Sn \ηn; Z′n and Sn bound a product
by construction so we can conclude that Sn and Sn also bound a product. As above, it remains
to show that the surfaces Sn are contained in a ball of uniform radius centered at ωn. The proof
of this claim is exactly as in Lemma 6.3 if the surface Sn either intersects the core or separates Cn

from Pε0
ηn.

It remains to consider the case that Sn fails to separate the core from Pε0
ηn; then neither does

the surface Z′n. Hence Z′n and Sn \η ′
n bound a product region containing Cn. In particular there

is a component Yn of Z′n such that the inclusion Yn ↪→ Mn is a homotopy equivalence and maps
every curve which is boundary parallel to a parabolic in NG. The minimality assumption on P̂n

implies that we are in Case 1. �

We continue the proof of Proposition 6.1 in Case 2. We choose again a submanifold V of
NG containing B2D(ωG)∪Pε0(NG) and consider the surfaces φ−1

n (Sn). By Lemma 6.4, each of the
surfaces Sn contains a simple closed curve ηSn which can be isotoped inside of Pε0

ηn(M
′
n) to the

curve ηn ⊂ P̌n; in particular this isotopy does not cross Sn. This implies that the curve φ−1
n (ηSn)

represents a parabolic element in NG and, moreover, can be isotoped into a cusp without crossing
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φ−1
n (Sn). Denote by aG

n the annulus we obtain and let ZG
n be the surface obtained by gluing two

copies of aG
n to the surface φ−1

n (Sn\ηSn). The surfaces ZG
n are, after a small perturbation, properly

embedded and incompressible in NG. We deduce that as in Case 1, we may pass to a subsequence
so that ZG

n and ZG
m are homotopic for all m and n. This implies in turn that the surfaces φ−1

n (Sn)
and φ−1

m (Sm) are homotopic for all m and n because the cusp of NG corresponding to the curve
φ−1

n (ηSn) has rank one. Set S= φ
−1
1 (S1), η = φ

−1
1 (ηS1) and Z = ZG

1 . Note that the surfaces Sand
Z separate NG because the surfaces Sn separate M′

n.
The cover H3/π1(Z) of NG given by the surface Z is tame by Bonahon’s theorem. In par-

ticular, the lift, also denoted by Z, of the surface Z to this cover separates H3/π1(Z) into two
pieces which are homeomorphic to Z×R. The representations of π1(Z) induced by (φn)∗|π1(Z)
are faithful, so Proposition 2.5 guarantees that they converge strongly to the representation given
by the inclusion of π1(Z) into π1(NG). By construction, the surface φn(Z) is properly isotopic
to Sn \ηn. Since the discontinuity domain of the geometric limit NG is empty we obtain that
Sn\ηn is farther and farther away from φn(Z).

In particular, there is a component F of (H3/π1(Z))\Z with the property that all the relative
ends contained in F are degenerate. The covering theorem implies that F embeds under the
covering H3/π1(Z)→NG; we denote its image again by F . By construction, the almost isometric
maps φn : NG 99K M′

n can be extended to maps φF
n which are defined on F such that φF

n |F is a
proper embedding and such that we have Sn\ηn ⊂ φF

n (F).
Let E be the component of NG\Swhich contains F . Every relative end of NG contained in E

is by construction also contained in F and hence it is tame. This implies that E is homeomorphic
to S×R+. The almost isometric embeddings φn extend over E to maps φE

n so that φE
n |E is a proper

embedding.
This concludes the proof of Proposition 6.1 in Case 2 and we consider Case 3.
Case 3: For all n there is a component Sn of ∂CC(Mn) which is not quasi-Fuchsian.
As above, we identify Sn with a component, which we also denote Sn, of the boundary

∂CC(Mn) of the convex core CC(Mn) of Mn. First we are going to show that for all R> 0 there
are nR and R′ > 0 such for all n≥ nR there is a simplicial hyperbolic surface XR

n in Mn which is
contained in (BR′(Cn)∪Pε0(Mn)) \BR(Cn) and which is properly homotopic in Mn \BR(Cn) to
Sn.

We begin fixing R > 0. Since we are only considering the case that the algebraic limit has
empty conformal boundary we have nR with Sn∩BR(ωn) = /0 for all n ≥ nR. Therefore we
have a simplicial hyperbolic surface X0

n which is properly homotopic to Sn in Mn \BR(Cn) by
Proposition 5.1.

By Lemma 5.3 and Proposition 5.2 there is an interpolation (Xt
n)t∈[0,1] beginning at X0

n and

with X1
n ∩Cn = /0. Let tR

n be minimal with XtR
n

n ∩BR(ωn) 6= /0 and set XR
n = XtR

n
n . Lemma 6.2

implies that lXR
n
(γ) ≥ ε0 for every essential curve γ ⊂Sn which is either compressible or can be

homotoped into a component of Pn. Lemma 5.5 implies that there is DR
3 with XR

n ⊂ BDR
3
(ωn)∪

Pε0(Mn) for all n.
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The surface Sn is embedded and incompressible in Mn\Cn; thus, every neighborhood of XR
n

contains a properly embedded surface SR
n which is properly homotopic to Sn in Mn \Cn [FHS].

We remark that the surfaces SR
n and Sn bound a trivial interval bundle in Mn. As in the previous

cases, we consider the surfaces φ−1
n (SR

n) in NG and obtain a surface SR which does not intersect
BR(ωG), which is incompressible in NG \π(C) and with φn(SR) homotopic to SR

n for an infinite
set IR⊂ N. Each of the surfaces SR separates NG and we are going to show that there is R such
that one of the components E of NG \SR is homeomorphic to SR×R+. Once we have proved
this, we obtain as above that the almost isometric embeddings φn can be extended in the desired
way.

In the case that SR is incompressible in NG for some R then the same proof as in Case 2 applies.
Thus, we assume thus that SR is compressible for all R. We choose a sequence Rn → ∞ such that
SRn is disjoint from SRm for all n and m. We claim that, up to choice of a subsequence, the surfaces
SRn and SRm bound trivial interval bundles for all n and m. As in Canary [Can2] we obtain a
collection Γ of disjoint simple closed curves on the boundary ∂π(C) of the image of the compact
core with the following properties:

1. Γ intersects at least three times every essential simple closed compressible curve on ∂π(C),

2. Γ intersects the boundary of every essential and properly embedded annulus (A,∂A) ⊂
(π(C),∂π(C)),

3. 0 = [Γ] ∈ H1(π(C);Z) and

4. the collection Γ is freely homotopic in NG to a collection Γ∗ of primitive geodesics.

The collection Γ∗ is perhaps not the disjoint union of simple geodesics in NG but Canary [Can1,
Can2] proved that NG admits a metric g with pinched negative curvature which coincides with
the hyperbolic metric of NG outside of a small neighborhood of Γ∗ and such that Γ is homotopic
in (NG,g) to a disjoint union Γg

∗ of simple geodesics in (NG,g). The collection Γg
∗ is homologically

trivial and, therefore, there is an embedded surface Σ⊂ NG with ∂Σ = Γ∗. The surface Σ induces
a 3-fold cyclic branched cover σ : N3

G → NG. Let K be a compact set which contains the surface
Σ, the image π(C) of the the compact core and the track of a homotopy of Γ∗ to Γ, and let K3 be
the pre-image of K under σ . Without loss of generality we assume that none of the surfaces SRn

intersect K; hence SRn lifts homeomorphically to a surface ŜRn in N3
G−K3 for all n.

The proof of the following Proposition is, word-for-word, the same as the proof of Proposi-
tion 16 in [Sou].

Proposition 6.5. The surfaces ŜRn are incompressible and represent only finitely many proper homo-
topy classes. �

It follows from Waldhausen’s co-bordism theorem [Wald] that the surfaces ŜRn and ŜRm bound
a submanifold of N3

G homeomorphic to ŜRn × [0,1] for infinitely many, say all, n and m. The
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branched covering σ is one-to-one on this interval bundle; thus, the surfaces SRn and SRm bound
an interval bundle in NG. This yields the desired tame end E of NG and concludes the proof of
Proposition 6.1.

7 Essential surfaces in the geometric limit

In this section we apply Proposition 6.1 fill in the proof of the remaining missing ingredient in
the proof of Theorem 1.1. We again remind the reader that we assume the working assumption of
section 4 holds.

Proposition 7.1. Assume the geometric limit NG is not a product. Then there is a properly embedded
finite type surface S ↪→ NG so that one component E of NG \S is homeomorphic to S×R+ and the
surface Seither is compressible or contains an essential simple closed curve γ that is homotopic into a
cusp in NG but not entirely within E.

Proof. To begin the proof, we assume that we have the output of Proposition 6.1. Let NC =
NG \E, and let NS denote the cover of NG corresponding to π1(S). We will denote again by E
the isometric lift of E to NS, and we let P∂S⊂ PS denote the subset of the cuspidal part PS of NS

corresponding cusps to which S is asymptotic.
If NS is doubly degenerate, then by an application of the covering theorem (see [Th1, Can3])

the geometric limit NG is also doubly degenerate, and is therefore a product.
Note that we may assume each relative end of NG that lies in E is degenerate, since otherwise

NG has non-empty conformal boundary and we can conclude that M is tame by [BBES].
Thus, if NS is not doubly degenerate we claim we are in one of two situations.

Claim. If NS is not doubly degenerate then either

1. S0 is compressible and there is an essential non-peripheral simple closed curve γ ⊂ S0 that is
homotopically trivial in NS, or

2. the surface S0 is incompressible and there is an essential, non-peripheral simple closed curve γ

homotopic in NS\E into a cusp P of NS.

Noting that condition two guarantees that the projection of γ to NG is homotopic into a cusp
of NG but not entirely within the image of E, it suffices to prove this claim to verify Proposi-
tion 7.1.

Evidently, the only alternative to these options is that S is incompressible and the end of
NS\P∂S that maps to NC is geometrically finite with no extra cusps. Given ε ∈ (0,1) let Sε

denote the strictly convex boundary of the ε -neighborhood of the convex core of NS, and let S 0
ε

denote Sε ∩ (NS\ int(PS)). We note that the assumption that the end of NS mapping to NC is
geometrically finite with no extra cusps guarantees that the surface Sε is connected.
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Let B denote the metric completion of the connected component of NS\ (S∪Sε) containing
S and Sε in its closure, and let B0 denote its compact intersection with NS\ int(PS). Then we
may choose a compact subset K about the base-frame in NS that properly contains B0 and note
that the almost-isometries

φn : NG 99K Mn

lift to local almost isometries that converge to a local isometry on K.
By the assumption that the convergence Mn → NG is geometrically type-preserving, we may

moreover choose φn to be cusp preserving: φn sends K ∩ ∂PG to ∂Pn where Pn is the parabolic
locus of Mn. Applying Proposition 6.1 we may extend each φn to a mapping φE

n on E so that
φE

n |E is a proper embedding.
Since we will work almost entirely with the cover NS, we denote the lifts of the almost

isometries to the appropriate subsets of NS again by φn and their extensions by φE
n . Since the

end E lifts to NS, it follows that for n sufficiently large, say for all n, the mappings φE
n are local

homeomorphisms on the union K∪E that restrict to embeddings on E.
Since the surfaces φn(S) satisfy the conclusions of Proposition 6.1, we may assume after pass-

ing to a subsequence that there are essential non-peripheral simple closed curves γn on S so that
either

1. φn(γn) is compressible, or

2. φn(γn) is homotopic into a cusp of Mn, but not entirely within φE
n (E).

We will work with a single n whose value we will increase as necessary.

The compressible case. Assume first that the simple closed curve η = φn(γn) on φn(S) is compress-
ible. Then we let D be a ruled compressing disk for η , obtained by joining a fixed basepoint to
each point along the curve η by geodesics: letting gt be the geodesic joining η(0) to η(t) homo-
topic to η([0, t]) rel endpoints, we obtain a homotopy of η to the identity by taking D(t) to be
the sub-disk of D bounded by the geodesic gt and the sub-arc η([t,1]).

Assume for the moment that P∂S is empty (i.e. S is closed). Since φn is a covering map with
a well defined inverse φ−1

n on a neighborhood of η , we may extend φ−1
n over Dt for a maximal

closed interval of parameter values t ∈ [a,1] ⊂ [0,1]. If a > 0, then there is a value b∈ [a,1] for
which φ−1

n (gb) first touches the strictly convex closed surface Sε ⊂K. But φ−1
n is very close to an

isometry on any neighborhood U of a point x∈ gb for which φ−1
n (x) lies in B, so we may assume

the geodesic curvature of φ−1
n (gb) is as close to zero as we like for any portion of its length that

lies within B. In a neighborhood of the intersection of φ−1
n (gb) with Sε , then, is a nearly geodesic

segment σ , tangent to a strictly convex surface with both endpoints lying within the convex set
bounded by Sε , a contradiction (see Figure 1).

The only alternative is that a = 0, and therefore that φ−1
n may be extended over the entirety

of D. This contradicts that γn is homotopically essential in S.
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σ

B
φ−1

n (gb)

Sε
S

E

NS

Figure 1. The segment σ must bend to remain within Sε .

When P∂S is non-empty, we modify the argument as follows. We may assume that γn has been
chosen to avoid P∂S, and it follows that η avoids the corresponding cusps of Mn. If a geodesic
gt intersects a cusp of P∂S, then we may project each arc of intersection to ∂P∂S along geodesics
orthogonal to ∂P∂S. If we let pt denote the path obtained via this process, then pt is a broken
path consisting of geodesics in NG\P∂S together with horocyclic arcs, which are geodesics in the
flat metric on ∂P∂S. Let D′ denote the compression of η obtained using the paths pt rather than
the geodesics gt .

For each point x∈ pt for which φ−1
n (x) lies in P∂S∩B, geodesics through x in the flat metric

on ∂Pn are mapped to arcs in ∂P∂S with small geodesic curvature at φ−1
n (x) in the flat metric on

∂P∂S. Taking cusps determined by a smaller ε0 < µ if necessary, we may assume that the convex
core boundary surface X intersects P∂S orthogonally in a finitely bent, convex, piecewise geodesic
in the flat metric on ∂P∂S (see, e.g., [Th1, Ch. 8]). Hence, the intersection Sε ∩P∂S is convex in
the flat metric on ∂P∂S, and the same argument as above applies to show that φ−1

n can be extended
over all of D′, contradicting the incompressibility of γn.

The incompressible case. In the case that η is homotopic into a cusp, a similar argument shows
that we may construct a homotopy A of η to this cusp consisting of geodesically ruled disks or
disks made up of paths that are alternating sequences of geodesics and horocycles.

Precisely, choosing a basepoint y0 on η , we may parameterize η by η : [0,1] → Mn so that
η(0) = η(1) = y0. Joining y0 to each point η(t) by a geodesic gt homotopic rel endpoints to
η([0, t]) we again obtain a ruled disk D0 giving a homotopy of η to the based geodesic η0 at
y0 homotopic to η . We may then choose another point y1 6= y0 on η0 and let D1 be the ruled
disk describing a similar homotopy from η0 to the based geodesic η1 at y1 homotopic to η .
Continuing inductively, we form a homotopy A of η to its cusp Pη in Pn so that A is made up
of such ruled disks. As before, when any geodesic in a ruling of a disk Di intersects a cusp of Pn

other than Pη , we may project this arc of intersection to a horocycle in ∂Pn, and likewise we may
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always choose yi to lie outside of Pn\Pη .

y0 y1 y2

gtη(t)

η1
η0

η2

η

Figure 2. A piecewise ruled homotopy of η to a cusp.

As in the above argument, we may extend φ−1
n over all of A since convexity of Sε again

prevents the pre-image of any of the geodesics that make up A from intersecting Sε in its interior
(and yi lies in the interior of ηi−1, for all i ≥ 1). Since A contains arbitrarily short representatives
of the homotopy class of η , it follows that A gives a homotopy of η into a cusp of Mn. Moreover,
this cusp must lie within the image φE

n since A lies in the complement of Sε and η is non-
peripheral in S.

Since E is a product, it follows that η is homotopic entirely within φE
n (E) to a cusp, which

contradicts Proposition 6.1. This contradiction verifies the Claim, and therefore proves the
proposition. �
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