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A hallmark of the modern study of 3-dimensional
manifolds has been the role of geometry, or more
specifically, geometric structures, in exploring
their topology. W. Thurston’s geometrization
conjecture that each closed 3-manifold admits a
decomposition into pieces each with a geometric
structure is a powerful example of the force of
geometry to render topological questions
tractable, as its recent solution due to G.
Perelman illustrates.

But last year’s Clay Prize focuses on an earlier
example of such a role for geometric structures
on 3-manifolds, an example that beautifully
draws together topology, geometry, and

dynamics in low dimensions. The solution to
Albert Marden’s tameness conjecture represents
a remarkable story of how a natural initial
question can evolve and broaden in its
implications and depth, cross-pollinating different
subfields and disciplines along the way.

An open 3-dimensional manifold M is called
tame if it is homeomorphic to the interior of a
compact 3-manifold. In his efforts to prove
Poincaré’s conjecture that each simply
connected closed 3-manifold M is
homeomorphic to the 3-dimensional sphere,
J.H.C. Whitehead discovered the first non-tame
3-manifold: a contractible 3-manifold
topologically distinct from the open ball. This
example led the way to numerous constructions
of non-tame 3-manifolds with non-trivial
fundamental group. Albert Marden, in his
seminal investigation of the topological
properties of 3-manifolds with a complete metric
of constant negative curvature −1, the so-called
hyperbolic 3-manifolds, formulated the following
conjecture [Mar].

MARDEN’S TAMENESS CONJECTURE — Each
complete hyperbolic 3-manifold with finitely
generated fundamental group is homeomorphic
to the interior of a compact 3-manifold.

The conjecture, evidently easy to state,
historically well motivated, and resilient, is made
all the more remarkable by its profound
importance and applications to disparate
branches of mathematics. Last year’s Clay Prize
was awarded to Ian Agol, Danny Calegari, and
David Gabai for two independent solutions of
Marden’s conjecture [Ag], [CG].

Jeffrey F. Brock
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Its implications for

1. the Ahlfors measure conjecture for limit sets
of finitely generated Kleinian groups, and

2. the classification of finitely generated
Kleinian groups up to conjugacy,

lend it an unusual status at the intersection of
topology, geometry, and dynamical systems

The network of implications and connections
placing this conjecture in its modern framework
owes a great debt to the work of W. Thurston, F.
Bonahon, and R. Canary. We will attempt to
elucidate this web of dependencies, describe the
ramifications of the conjecture, now established,
and to give a perspective on its proof.

A few words about Kleinian groups. At the center
of the discussion is the notion of a Kleinian group
Γ, namely, a discrete subroup of PSL2(C), which
plays alternatively the role of a group of Möbius
transformations of Ĉ and a group of
orientation-preserving isometries of hyperbolic
3-space H3 via the natural extension to the
unit-ball model of H3. As the present discussion
concerns groups with a manifold quotient
M =H3/Γ, we will assume Γ is torsion free, and
we will for simplicity omit any discussion of the
case when Γ has parabolic elements, which
correspond to embedded cusp-regions of M with
standard topology.

The action of Γ on the Riemann sphere Ĉ
determines a partition Ĉ= Λ!Ω of the sphere
into its limit set Λ = Γ(0)∩ Ĉ, the smallest
closed Γ-invariant subset of Ĉ and its domain of
discontinuity Ω, where Γ acts properly

discontinuously by conformal homeomorphisms.

The quotient (H3 ∪Ω)/Γ gives a partial
boundary for the complete hyperbolic 3-manifold
M =H3/Γ, by adjoining Ω/Γ, the conformal
boundary of M, a finite collection of finite-type
Riemann surfaces by Ahlfors’ finiteness theorem
[Ah1].

The convex hull CH(Λ) in hyperbolic space of
the limit set Λ is the smallest hyperbolically
convex set in H3 that contains Λ in its closure.
As CH(Λ) is Γ-invariant, its quotient CH(Λ)/Γ is
a geometrically preferred subset C(M) of M, the
convex core of M.

Ahlfors’ conjecture. One of the more remarkable
features of Marden’s conjecture is its implication
for conformal dynamical systems, established by
Thurston, Bonahon, and Canary some years
after its formulation.

AHLFORS’ MEASURE-ZERO CONJECTURE — If the
limit set Λ of a finitely generated Kleinian group
Γ is not all of Ĉ, Λ has zero Lebesgue measure
in Ĉ.

The conjecture was later expanded to include the
expectation of ergodicity of the action of Γ on Λ if
Λ = Ĉ. Ahlfors’ motivation rested on questions in
the quasi-conformal deformation theory of
Kleinian groups. For if each such limit set has
measure zero, a non-trivial quasi-conformal
deformation of a Kleinian group induces a
non-trivial quasi-conformal deformation of its
conformal boundary, guaranteeing that this
deformation theory rests on a proper
understanding of the Teichmüller theory of the
conformal boundary.
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But it is perhaps lucky that Ahlfors did not have
access to modern computer renderings of the
limit sets of finitely generated Kleinian groups, as
the conjecture might never have been made in
the first place (see Figure 1).

Figure 1.
A measure-zero limit set of a degenerate group.

Marden’s conjecture. Marden set out to give a
coherent description of the topological type of
the quotient spaces H3/Γ of finitely generated
Kleinian groups. In the geometrically finite
setting, when the convex core is assumed to
have a finite volume unit neighborhood, his proof
that the quotient manifold is homeomorphic to
the interior of the compact manifold represented
the first deep investigation of this topological
question [Mar].

It was in this article that he formulated the

Figure 2. Inside the convex hull of the limit set.

tameness conjecture, predicting that such a
simple topological description should exist for
any finitely generated Kleinian group Γ. This
conjecture would later be proven in more general
cases and in turn be reinterpreted to serve as a
centerpiece of Thurston’s conjectural
classification of finitely generated Kleinian
groups. The conjecture grows out of the core
theorem of Peter Scott [Sco] that each 3-manifold
with finitely generated fundamental group admits
a compact submanifold whose inclusion is a
homotopy equivalence. In the setting of a
hyperbolic 3-manifold M =H3/Γ, then, finite
generation of Γ guarantees the existence of a
decomposition into a compact submanifold and a
finite collection of complementary pieces, termed
ends of the manifold (more properly, each piece
is a neighborhood of an end, of M, depending on
the choice of core).

To prove Marden’s conjecture amounts to
proving a choice of compact core M exists so
that each end E is a product S×R+ where S is a
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component of the boundary ∂M . In the
geometrically finite setting, a nearest point
retraction map from the conformal boundary
Ω/Γ provided a natural product structure for the
ends of H3/Γ, which later came to be called
geometrically finite ends.

Wild ends and tame ends. It is instructive to
review what can go wrong in general. We briefly
review Whitehead’s construction: consider S3

decomposed into solid tori U and V along a
common torus boundary component T . Let
h : V →V denote the pictured embedding of V

h

V

h(V )

Figure 3. Whitehead’s embedding.

into itself: int(V )\h(V ) is then the complement
of the Whitehead link in S3. A meridian J of V is
then homotopically essential in V \h(V ) but
bounds a disk in S3 \h(V ) =U ∪ (V \h(V )).

Then J,h(J),h2(J), . . . ,hn(J) denote loops that
are homotopically distinct and non-trivial in
V \hn(V ), all of which become trivial in
S3 \hn(V ).

Letting X∞ = ∩nhn(V ), the Whitehead manifold
S3 \X∞ is a simply connected, indeed

contractible 3-manifold with the property that the
removal of a compact submanifold V leaves a
3-manifold with infinitely generated fundamental
group (by an application of Van Kampen’s
theorem). Such a manifold cannot be
homeomorphic to int(B3).

Note, however, that by the Cartan-Hadamard
theorem, there is a unique simply connected
complete Riemannian manifold of constant
curvature −1, namely, hyperbolic 3-space H3.
So the assumption of negative curvature tames
the topology in this case.

What about lifting the assumption of simple
connectivity? In a variant of Whitehead’s
construction due to Tucker [Tck], one replaces U
and V with a handlebodies of the same genus,
and h : V →V becomes a knotted embedding of
V into itself (h is homotopic but not isotopic to
the identity). The result is an open 3-manifold
that is exhausted by compact cores, but for
which the complement of U has infinitely
generated fundamental group. The possibility

V

h

h(V )

Figure 4. A knotted handlebody.

that such a 3-manifold might admit a complete
hyperbolic structure was later ruled out by a
result of Souto [Sou], but examples of sequences
of embeddings with unbounded genus and more
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and more complicated knotting remained out of
reach until the solution of the full conjecture.

Geometric tameness. Though Ahlfors established
his measure-zero conjecture for geometrically
finite Kleinian groups [Ah2], W. Thurston
described an extension of Ahlfors’ theorem in his
Princeton Lecture Notes Geometry and Topology
of Three-Manifolds [Th1], employing very directly
the internal geometry of the quotient hyperbolic
3-manifold M =H3/Γ where Γ is a finitely
generated torsion-free Kleinian group.

A centerpiece of Ahlfors’ argument involves the
natural harmonic extension of the characteristic
function of a measurable set on the Riemann
sphere Ĉ to a harmonic function h̃ on hyperbolic
space H3, the solution to the Dirichlet problem. If
the set is invariant by the action of the Kleinian
group Γ, its characteristic function and hence its
extension are as well, and h̃ descends in the
quotient to a harmonic function h on the
hyperbolic 3-manifold M =H3/Γ. Harmonicity of
h guarantees that its gradient flow is volume
preserving.

A geometric condition introduced by Thurston
that generalizes geometric finiteness, termed
geometric tameness, ensures that no positive
measure set of flow lines can exit an end of the
convex core C(M). This gives a maximum
principle for non-constant harmonic functions on
C(M), showing that no measurable invariant
subset of Λ can have a point of Lebesgue
density unless it is all of Ĉ.

Briefly, the assumption of geometric tameness
for the end E of C(M) provides for intrinsically
hyperbolic surfaces Xn exiting the end E , each

homotopic to the boundary S of E ; the geometry
of Xn guarantees a bounded-diameter statement
that controls the volume swept out by a unit
neighborhood of each Xn, which in turn serves to
limit the measure of flow lines of ∇h crossing Xn.
The manifold H3/Γ is geometrically tame if all its
ends are geometrically finite (asymptotic to a
component of the conformal boundary) or
geometrically tame.

Topological and geometric tameness. Thurston
established the topological implications of
geometric tameness in many settings in his
Notes [Th1]. He used the surfaces exiting the
end to build a topological product structure for
the end, proving topological tameness in these
settings. A key role is played by sequences of
closed geodesics {γn} that exit E that can be
made simple (non self-intersecting) when
realized as curves on the boundary S. Such
geodesics serve to anchor the surfaces Xn and
force them to infinity.

Thurston’s geometric condition, moreover, gave
rise to a new invariant of the geometry of a
geometrically tame end, namely, its ending
lamination, a kind of limit of {γn}. A posteriori,
the ending lamination ν(E) encodes the limiting
combinatorial picture of bounded length closed
geodesics that exit the end E. It is only clearly
well defined, however, when the end is assumed
geometrically tame.

In ensuing years, Bonahon showed that one can
always find closed geodesics {γn} that may fail
the simplicity assumption above, and showed
how to use their limit to find new geodesics {γ ′n}
that do satisfy the simplicity condition, provided
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that S ↪→ M is injective on the level of
fundamental group [Bon]. Geometric tameness
followed in this case. Later, Canary showed how
to relax Bonahon’s hypotheses in such a way to
show that any topologically tame hyperbolic
3-manifold is geometrically tame, thereby
reducing Ahlfors’ original conjecture to Marden’s
[Can1]. He also showed how to generalize
Thurston’s argument to build topological product
structures for general geometrically tame ends,
thereby showing the equivalence of topological
and geometric tameness.

The proof. A complete description of the proof is
naturally out of the scope an article such as this
one. Essentially, the goal rested in trying to find
the appropriate replacement for the simple
closed geodesics {γn} exiting an end E that is
not geometrically finite as a method to produce
exiting surfaces Xn in the same homotopy class.
It is interesting to note both how geometry and
topology played key roles:

1. The original argument of Bonahon
guarantees the existence of closed
geodesics {γn} exiting the end E , not
necessarily homotopic to simple curves on
S.

2. A topological innovation called an
end-reduction allows one to find surfaces in
the end that lie outside or “engulf” an
arbitrary finite subcollection of these
geodesics.

3. Such surfaces can be pulled tight to
geometric surfaces in the complement of the
geodesics they enclose: the sets of

geodesics are said to be “shrinkwrapped” by
a geometric (CAT (−1)) surface, and
infinitely many such lie in the same
homotopy class.

4. A bounded diameter lemma together with a
homology argument guarantees these
surfaces exit the end, and then standard
techniques produce the desired product
structure as in the geometrically tame
setting.

A critical topological insight was to notice the
efficacy of technology on analyzing the ends of
open 3-manifolds due to M. Brin and T.
Thickstun, and R. Myers. Indeed, their end
reductions provide the key facts from 3-manifold
topology to guarantee the usefulness of the
exiting geodesics — one can imagine that they
provide cellophane that is used in the
shrinkwrapping. In effect, the shrinkwapped
surfaces Zn replace the surfaces assumed in
geometric tameness, and the exiting geodesics
γn serve to show the surfaces Zn exit the end E .

We remark that we have focused on the solution
presented by Calegari and Gabai, in which
shrinkwrapping is accomplished using minimal
surfaces, but a more recent treatment due to T.
Soma employs standard polyhedral techniques
to obtain the same result [So].

The Classification theorem. Much of Ahlfors’
original motivation for the measure-zero
conjecture was obviated in practice by Sullivan’s
rigidity theorem [Sul], which guaranteed the
absence of deformations supported on the limit
set alluded to previously. In more recent years, it
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was the progress toward and ultimate solution to
the ending lamination conjecture of Thurston due
to Minsky [Min] and concluded by work of this
author with Canary and Minsky [BCM2, BCM1]
that brought renewed attention to the tameness
conjecture.

The ending lamination conjecture predicts that
each geometrically tame hyperbolic 3-manifold
M =H3/Γ is determined up to isometry by its
homeomorphism type, its cusps (regions
corresponding to parabolic elements of Γ), and
its end invariant ν(M) consisting of the
conformal structures on Ω/Γ and the ending
laminations {ν(E )} for each geometrically tame
end of C(M). But in the intervening years, the
aforementioned work of Bonahon and Canary
showed the topological tameness of M to be the
complementary conjecture for a complete
classification theorem.

THE CLASSIFICATION THEOREM — Each
complete hyperbolic 3-manifold with finitely
generated fundamental group is determined up
to isometry by its topology, its cusps, and its end
invariant.

The theorem, which formally combines the
tameness theorem and the ending lamination
theorem, sets to rest what has been perhaps the
central motivating conjectural question in finitely
generated Kleinian groups. It is notable however,
that the output is richer than simply a
classification: the method of proof of the ending
lamination theorem produces a combinatorial
model for the ends M directly from the
end-invariant data ν(M), and thus a uniform
picture of its hyperbolic metric up to bi-Lipschitz

equivalence. That any finitely generated Kleinian
group can now be understood so concretely
provides new methods to study the internal
geometry of the full spectrum of hyperbolic
3-manifolds, their deformation spaces, and how
their topological, analytic, and geometric
invariants interrelate.

Implications. In his seminal Bulletin article [Th2],
Thurston’s list of twenty-four problems and
questions set the stage for the next thirty years
of activity in the geometry and topology of
3-manifolds, and in particular the fields of
Kleinian groups and deformation theory of
hyperbolic 3-manifolds. (It is notable that
Thurston’s celebrated geometrization conjecture
is question 1 on this list. To reflect on how far the
field of geometric structures on 3-manifolds has
progressed in the last ten years is, once again,
beyond the scope of this article, but we simply
state, for emphasis, questions in Thurston’s list in
which the solution to tameness plays a central
role.

1. AHLFORS’ MEASURE CONJECTURE.
Thurston’s harmonic flow argument together
with Canary’s theorem that topologically
tame implies geometrically tame guarantee
that the limit set Λ of a finitely generated
Kleinian group has zero or full measure, and
if full, the action of Γ is ergodic on Λ.

2. THE CLASSIFICATION OF FINITELY

GENERATED KLEINIAN GROUPS. Because
ending laminations are only defined for tame
ends, the proof of the ending lamination
conjecture [BCM2, BCM1] requires
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tameness to apply to all finitely generated
Kleinian groups.

3. THE DENSITY CONJECTURE. After work of
Namazi and Souto [NS], each candidate
end-invariant can be realized in a limit of
geometrically finite manifolds, and hence the
limit is isometric to a given (necessarily
tame) manifold by the ending lamination
conjecture. This resolves the Density
Conjecture of Bers, Sullivan, and Thurston
(independently resolved by [BS]).

4. THE MODEL MANIFOLD CONJECTURE. A
combinatorial bi-Lipschitz model for the
ends of hyperbolic 3-manifolds with finitely
generated fundamental group, conjectured
by Thurston, arises directly from the ending
lamination in the proof of the ending
lamination conjecture, and is thus only
operative in full generality after tameness.

There are numerous other deep implications of
tameness and the model manifold theorem for
the geometry, topology, and dynamics of finitely
generated Kleinian groups and their associated
hyperbolic 3-manifolds. The ergodicity of the
geodesic flow on the unit tangent bundle,
Simon’s tameness conjecture for covers of
compact manifolds, the recently claimed
local-connectivity theorem for limit sets of finitely
generated Kleinian groups [Mj], and the
enumeration of components of the deformation
space of a Kleinian group [BCM2], are just a few
other major examples. For a survey of these and
many other applications see [Can2].

The story of the symbiosis between geometry

and topology in 3-dimensions continues to be
written, and more and more precise connections
between geometric and topological invariants for
3-manifolds emerge with ever-increasing
frequency. The tameness theorem taken
together with the model manifold theorem
guarantees that for each finitely generated
Kleinian group Γ, the hyperbolic 3-manifold
H3/Γ can be modeled in a combinatorial way on
its ending laminations. Such a combinatorial
structure provides many new methods and tools,
and indeed new questions for investigation in the
study of 3-manifolds.

An apocryphal story has it that Ahlfors submitted
a one-line grant proposal late in his career
containing the single sentence: “I will continue to
try to understand the work of Thurston.” No doubt
he would be gratified to see how the cumulative
efforts of so many mathematicians have
culminated in such a rich narrative, intertwining
the solution to his own conjecture with those of
Marden, Thurston, Bers, and Sullivan, and how
so many fundamental questions in the geometry,
topology, and dynamics of Kleinian groups have
been set to rest.
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