
Continuity of Thurston’s length function

Jeffrey F. Brock

Abstract. A measured lamination µ geodesically realized in a hyperbolic
3-manifold M has a well defined average length, due to W. Thurston. For
M ∼= S × R we prove that the function measuring the average length of the
maximal realizable sublamination of µ varies bi-continuously in M and µ.
Since connected, positive, non-realizable measured laminations arise as zeros
of the length function, its continuity suggests new behavioral features of quasi-
isometry invariants under limits of hyperbolic 3-manifolds.
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1. Introduction

The geodesic length function is a fundamental tool in the study of deformation
spaces of hyperbolic manifolds. In dimension 2, average length functions for mea-
sured laminations interpolate between positive scalar multiples of geodesic length
functions for simple closed geodesics.

This notion also works in dimension 3: in general, one seeks a pleated surface X
that realizes a measured lamination µ geodesically in a hyperbolic 3-manifold M .
Then length in M is just length on X . For M ∼= S × R, this notion of length in M
has been central to the idea that aspects of the geometry of hyperbolic 3-manifolds
are controlled by the geometry of hyperbolic surfaces.

Originally, in his 1986 preprint [Th4], Thurston stated a continuity theorem
for the length function on the subset of the product of the measured lamination
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space with the deformation space of M where such realizing surfaces exist. This
theorem was applied in the proof of the celebrated double limit theorem, though its
proof was referred to a later paper (which has yet to appear).

We develop new uniform estimates on the geometry of pleated surfaces to ob-
tain continuity result that subsumes Thurston’s statement, giving a proof of this
statement along the way. To state our results we review terminology.

Let S be an oriented surface, closed for simplicity. Let ML(S) be the space of
measured laminations on S: the completion of the set of isotopy classes of essential
simple closed curves γ on S equipped with positive real weights t ∈ R+ . Let
X ∈ Teich(S) be a marked hyperbolic Riemann surface. Then tγ determines a
closed geodesic γ∗ on X with real weight t, while a general measured lamination
µ ∈ ML(S) determines a geodesic lamination |µ| on X , a closed subset foliated
by complete geodesics, equipped with a transverse measure. There is a unique
continuous function lengthX : ML(S) → R so that lengthX(tγ) = t`X(γ∗), where
`X(.) denotes arclength in X .

Let AH(S) denote the space of hyperbolic 3-manifolds M marked by homo-
topy equivalences f : S → M (up to marking preserving isometry); AH(S) carries
the compact-open topology (or algebraic topology) on the induced homomorphisms
f∗ : π1(S) → Isom+

H
3 up to conjugacy. We say µ ∈ ML(S) is realizable in M

if there is a hyperbolic surface X ∈ Teich(S) and a continuous path-isometric
mapping g : X → M , consistent with markings on X and M , that maps each ge-
odesic in |µ| by a local isometry to a geodesic in M . When such an X exists,
set lengthM (µ) = lengthX(µ). Our first goal is to prove Thurston’s original claim
(theorem 6.1):

Theorem 1 Length Continuous on Realizables Let R be the subset of
AH(S) × ML(S) consisting of all pairs (M, µ) of measured laminations µ real-
izable in marked hyperbolic 3-manifolds M . Then the length function

length: R→ R

is continuous.

While the length of µ in M is not well defined when µ is not realizable in M ,
density of R in AH(S)×ML(S) allows an extension of lengthM (µ) to the function
length

M
(µ) obtained by taking the lim inf of the infima of lengths of laminations

realizable in M in smaller and smaller neighborhoods of µ. Using the proof of
theorem 1, together with a train track shortening result of F. Bonahon, we prove
the following generalization (theorem 7.1).

Theorem 2 Length Extends Continuously The function

length: AH(S)×ML(S) → R

is continuous.

By work of Thurston and Bonahon, when µ is connected and non-realizable we
have length

M
(µ) = 0. Theorem 2 shows that in general length is the function

(M, µ) → lengthM ◦ RM (µ)

where RM : ML(S) →ML(S) is the projection map assigning to each µ ∈ML(S)
the maximal sublamination RM (µ) ⊂ µ that is realizable in M .
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We briefly discuss some difficulties in the proofs of theorems 1 and 2 that
arise from consideration of Gromov-Hausdorff or geometric convergence of 1, 2 and
3-dimensional hyperbolic manifolds.

Problematic Hausdorff limits of simple closed geodesics. One subtlety
in the proof arises even when M is fixed: given a convergent sequence tici → µ
in ML(S) of weighted simple closed curves, one may pass to a subsequence so
that the underlying closed geodesics ci converge in the Hausdorff topology to a
(necessarily connected) geodesic lamination λ. Any such limit λ contains |µ|. When
λ (and hence µ) is realizable, convergence of lengths lengthM (tici) to lengthM (µ)
follows from a straightforward argument due to Thurston using so-called nearly-
straight train tracks. When µ is realizable and λ contains non-realizable laminations
the question arises: which phenomenon dominates? If, for example, λ contains a
parabolic curve η and µ is a weighted closed geodesic, is it more efficient for the
geodesic representatives c∗i in M to travel in the cusp for η or near the closed
geodesic |µ|∗ realized in M? These tendencies compete, making the realizations c∗i
delicate to control (see §4).

Problematic geometric limits of hyperbolic manifolds. Another central
issue in the proof arises from the range of possible geometric limits of manifolds
Mi in an algebraically convergent sequence Mi → M . Indeed, one approach to
theorem 1 might employ compactness theorems for pleated surfaces to reduce the
theorem to the well-known surface case. It seems likely that such an argument
works on the product GH(S) ×ML(S) where GH(S) denotes the finer topology
on H(S) of strong convergence (Mi → M only if in addition (Mi, ωi) converges to
(M, ω) geometrically for compatibly chosen baseframes ωi). Convergent sequences
in AH(S) that do not converge in GH(S), however, are a bountiful source of
examples where such arguments run aground.

Consider the following example. On a surface of genus 2, let γ denote the central
separating curve and let (α1, β1) and (α2, β2) denote meridian longitude pairs on the
complementary punctured tori. It is possible to construct a convergent sequence

rank-2 cusps

Y

X

γ

β2

α1 α2

MG

β1

Figure 1. A problematic geometric limit. The algebraic limit M is the cover
corresponding to π1(Y ).

{Mi} ⊂ AH(S) converging algebraically to M and geometrically to a manifold MG
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covered by M so that

MG
∼= S × R −

{
(α1 ∪ α2, 1)

⋃
(β1 ∪ β2,−1)

}
,

and M is the cover corresponding to the inclusion on π1 of a boundary surface
Y ⊂ ∂MG with Y ∼= S. Then there are many families of compatibly marked pleated
surfaces Xi ⊂ Mi, so that the triples (Mi, Xi, ωi) converge geometrically to a triple
(MG, X, ω) for which X lifts in the natural covering M → MG to an annulus with
core curve γ (see figure 1); the surfaces Xi tend to infinity in Teichmüller space,
but always converge geometrically to a possibly smaller surface up to subsequence.
For µi approximating γ, any such limit X carries insufficient homotopy data from
M to control the shape of µi sitting on Xi; µi could conceivably unwind on Xi if
the structure on Xi were to become twisted about γ relative to Mi.

The content of theorem 3.6 (uniform relative twisting) is to control this poten-
tial unwinding. We show that when surfaces Xi realizing γ in Mi become arbitrarily
twisted about γ either lengthMi

(γ) → 0, or Mi →∞ in AH(S) (see §3).

Outline of the proof. We have chosen a direct approach that avoids explicit
discussion of geometric limits since an explicit description of the spectrum of such
limits is still very much under development.

For theorem 1, a diagonal argument gives a reduction to evaluating length on
sequences where weighted simple closed curves tici → µ in ML(S) and Mi → M
in AH(S). Via a projection map, we obtain the “closest” geodesic lamination λi

to ci that contains |µ|. We then attempt to control the geodesic representatives of
ci on pleated surfaces Xi realizing λi in Mi. When Mi = M , this amounts to two
challenges:

1. when ci spirals towards a simple closed geodesic γ ⊂ |µ|, we show it spirals
on any pleated surface realizing γ, and

2. when ci enters a close neighborhood of |µ| on X deep in a ‘spike’ of X − µ,
we show it does so on any pleated surface realizing µ.

In particular, these properties hold on Xi. When {Mi} converges algebraically, we
show that the estimates involved hold uniformly.

Then ci can be forced to run along leaves of λi except for short jumps between
leaves of λi. These short jumps are short in the unit tangent bundle, which allows
us to construct a nearly-straight 1-complex in τi in Mi so that leaves of µ and ci are
simultaneously homotopic into paths on τi of small geodesic curvature (see §4 and
lemma 5.2 for technical statements). These so-called nearly-straight train tracks τi

serve to control both the position and the length of ci in Mi for i sufficiently large.
As for theorem 2, the above argument shows that when µ is not necessarily

realizable the limiting lengths are at least the length of the largest realizable sub-
lamination µr of µ. For the remaining sublamination µnr, work of Bonahon shows
that any sequence approximating µnr has length tending to zero in M . Combining
these techniques and adapting to algebraic convergence, theorem 2 follows.

Applications. It follows from theorem 2 that the zero-locus of length consists
of pairs (M, µ) such that either µ = 0 or µ is the union of connected laminations
non-realizable in M . Theorem 2, then, has the following application (corollary 7.3).

Corollary Zero-Locus Let (Mi, µi) converge to (M, µ) in AH(S) ×ML(S) so
that the sequence {

length
Mi

(µi)
}∞

i=1
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converges to 0. Then RM (µ) = 0.

In other words, no positive component µ′ of µ is realizable in M . Since for
any positive connected µ′ in the kernel ker (RM ) of RM the support |µ′| is a quasi-
isometry invariant of M , the corollary gives insight into how quasi-isometry invari-
ants behave under algebraic convergence. We take up this question in [Br1].

History and references. The length function was originally introduced by
Thurston in [Th1] and is discussed in [Th5]. The statement of theorem 1 ap-
pears in [Th4, Prop. 3.1] without proof, and length is defined in [Th4, §3]. Much
work in the surface case is due to Francis Bonahon, who develops an elegant unified
theory of Teichmüller space and measured lamination space via geodesic currents
in [Bon1] and [Bon2].

F. Bonahon has recently developed a holomorphic analog for the length of a
fixed measured lamination µ that generalizes the complex length of a simple closed
geodesic, see [Bon3]. Bonahon has also shown in [Bon4, §7] that given a finer
topology (that prevents the type of convergence described in the first problematic
example above) measured laminations realized in a fixed manifold M have continu-
ously varying lengths. See also [Ohs] who treats the case where no new parabolics
arise in the limit M of Mi (an assumption ruling out both problematic examples).

The geometric topology on pleated surfaces is discussed in [CEG] and [Th2],
and geometric limits of the type MG above are studied in [BO], [Th4, §7], and
[Br2]. Nearly-straight train tracks were first introduced by Thurston in [Th1, Ch.
8]. Their uses have been developed extensively by F. Bonahon in [Bon1] and Y.
Minsky in [Min1] [Min2] to understand degenerate ends of hyperbolic 3-manifolds
via geodesic currents and harmonic maps.

Plan of the paper. We first discuss background of surfaces and hyperbolic struc-
tures. Sections 3 and 4 develop uniform estimates for pleated surfaces, and use these
estimates for the construction of uniformly nearly-straight train tracks mentioned
above in section 5. Theorem 1 is then proven in section 6 where the train-tracks of
section 5 prove sufficiently robust to imply lower semi-continuity of the extended
function length defined on the full product AH(S) ×ML(S). We then adapt the
shortening technique of Bonahon [Bon1, §5] to the setting of algebraic convergence
to show upper semi-continuity of length in section 7.

Acknowledgments. I would like to thank Yair Minsky for discussions of many
aspects of this argument, as well as Francis Bonahon for suggesting the application
of his shortening process to theorem 7.1. I would also like to thank Dick Canary,
Steve Kerckhoff, Bill Thurston, Curt McMullen, and the referee for many helpful
suggestions.

2. Preliminaries

Let S be a compact oriented surface of negative Euler characteristic. When S
has boundary ∂S, let int(S) denote its interior S − ∂S.

Teich(S). The Teichmüller space Teich(S) of S is the space of isotopy classes
of marked hyperbolic structures of finite area on int(S); that is, isotopy classes
of orientation-preserving homeomorphisms (f : int(S) → X) from int(S) to the
complete, finite-area, hyperbolic surface X . Points X ∈ Teich(S) are implicitly
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marked. We will use the notation (f, X) ∈ Teich(S) when explicit reference to the
marking is necessary.

The intersection number. Let S be the set of all essential non-peripheral isotopy
classes of simple closed curves on S. The geometric intersection number

i : S× S→ Z

counts the minimal number of intersections of curves γ and η in a pair of isotopy
classes ([γ], [η]) ∈ S× S, and takes the value 0 on the diagonal.

ML(S). The measured lamination space is the closure of the image of the set
R+ × S under the embedding

ι : R+ × S→ R
S

+

defined by
〈ι(tβ)〉α = ti(α, β).

Let ML(S)+ denote the positive elements of ML(S). The function i(., .) admits a
continuous linear extension to

i : ML(S)×ML(S) → R≥0

(see [Bon1, Prop. 4.5]).

GL(S). Let X ∈ Teich(S) be a hyperbolic surface. Then a geodesic lamination λ
on X is a closed subset of X with a decomposition as pairwise disjoint complete
simple geodesics called leaves of λ. The geodesic laminations GL(X) are topologized
by the Hausdorff topology on closed subsets of X [CEG, §4.1] [Mc, §2.1]. Since for
any other surface Y ∈ Teich(S), GL(X) and GL(Y ) are canonically homeomorphic
via the circle at ∞ for π1(S) (see [Fl], [Bon2]), GL(X) is canonically associated
to the topological surface S. We use the notation GL(S) and think of a point λ in
GL(S) as specifying a geodesic lamination on any hyperbolic surface. A geodesic
lamination λ ∈ GL(S) on is maximal if each component of the complement of its
realization on X ∈ Teich(S) is the interior of an ideal hyperbolic triangle.

Measured laminations µ ∈ ML(S) are identified with transversely measured
geodesic laminations (see [Th1, §8] [Bon2]) of compact support; a measured lam-
ination µ determines a geodesic lamination |µ| ∈ GL(S) whose realization on any
X ∈ Teich(S) is compact.

The thick-thin decomposition. Given any Riemannian manifold M , the injec-
tivity radius inj : M → R is the function that measures the radius of the maximal
isometrically embedded open ball at each point x ∈ M . Given any ε > 0 M admits
a decomposition into its ε-thick-part M≥ε where inj ≥ ε and its ε-thin-part M<ε

where inj < ε. When M is a complete hyperbolic n-manifold a theorem of Mar-
gulis implies there is a constant εn depending only on the dimension, such that the
εn-thin-part M<εn has a standard type.

For n = 2, each component of M<ε2 is either an annular neighborhood of a short
geodesic, or isometric to a neighborhood of the puncture in a hyperbolic punctured
disk. For n = 3, each component T of M<ε3 is either

• a Margulis tube: T ∼= S1 × D2 is a solid torus neighborhood of a short
geodesic γ in M ,

• a rank-1 cusp: T ∼= S1 × R × (0,∞) is the quotient of a horoball by a Z
parabolic subgroup Isom+

H
3 ,
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• or a rank-2 cusp: T ∼= T 2 × (0,∞) is the quotient of a horoball by a Z⊕ Z
parabolic subgroup of Isom+

H
3

(see [BP, Thm. D.3.3]).
The hyperbolic 3-manifolds of principal interest to us will be described by the

following deformation space.

AH(S). Let H(S) denote the set of all hyperbolic 3-manifolds M marked by
homotopy equivalences f : S → M such that f sends ∂S to cusps of M under the
equivalence relation

(f : S → M) ∼ (g : S → N)

if there is an isometry φ : M → N such that φ ◦ f is homotopic to g. With the
compact-open topology on the holonomy representations [f∗] : π1(S) → Isom+(H 3 )
up to conjugacy, H(S) becomes the algebraic deformation space AH(S). As with
Teich(S), manifolds in AH(S) are implicitly marked.

To pin down a specific representation in the conjugacy class of f∗ (up to inner
automorphism of π1(S)), it suffices to make a choice of baseframe ω ∈ M , that is
a basepoint, which we denote by |ω|, and an orthonormal frame at the basepoint.
Then requiring that the standard frame at the origin in H 3 lie over ω in the covering
projection H 3 → M , determines a representation ρ ∈ [f∗]. Given an algebraically
convergent sequence Mi → M in AH(S), there are by definition baseframes ωi ∈ Mi

that determine convergent representations ρi → ρ, i.e. so that ρi(g) → ρ(g) in
Isom+(H 3 ) for each g ∈ π1(S).

A more geometric formulation of the algebraic topology (via compactness of the
based hyperbolic manifolds (Mi, ωi) in the geometric topology, see [BP, Ch. E.])
is the following: Mi converges to M in AH(S) if for any compact subset K ⊂ M ,
there are smooth, marking-preserving homotopy equivalences

qi : M → Mi

so that qi tends to a local isometry on K in the C∞ topology (see [Mc, §3.1]).

Pleated Surfaces. A pleated surface g : X → M in a hyperbolic 3-manifold
M , is a hyperbolic surface X together with a path-isometry g : X → M (g sends
rectifiable arcs in X to rectifiable arcs in M of the same length) with the property
that through each x ∈ X there is a geodesic segment α mapped isometrically to M .

The pleating locus Π(g) is the set of points on X where g fails to be a local
isometry. The pleating locus is a geodesic lamination on X (see [Th2, Prop. 5.2]);
it is the set where the image of g is bent, or pleated.

Given M = (f : S → M) ∈ AH(S), define the set PS(M) to be the set of
compatibly marked pleated surfaces in M : i.e. the set of pairs (g, X), such that
g : X → M is a pleated surface, X = (φ, X) lies in Teich(S), and we have g ◦φ ' f .
As with Teich(S) we will often suppress reference to marking and write X ∈ PS(M)
to refer to a compatibly marked pleated surface g : X → M .

Realizing laminations. We say the pleated surface (g, X) ∈ PS(M) realizes
the geodesic lamination λ on X if g maps each leaf of λ by a local isometry to
M (the intersection λ ∩ Π(g) is again a geodesic lamination). For given M , the
subset R(M) ⊂ML(S) consisting of µ ∈ML(S) such that |µ| is realizable in M is
dense in ML(S) (see [Th1] [CEG]). We say µ ∈ R(M) is realizable as a measured
lamination; by convention the zero lamination 0 ∈ ML(S) is trivially realizable.
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Given M ∈ AH(S), let

RM : ML(S) →ML(S)

be the projection so that RM (0) = 0 and for any µ ∈ ML(S)+, RM (µ) is the
maximal sublamination of µ that is realizable in M .

If c ∈ S satisfies RM (tc) = 0, t > 0, c is called an accidental parabolic for M .
Note that the image RM (ML(S)) = R(M) is not in general open when M has
accidental parabolics, but it contains an open dense subset of ML(S) (see [Th1,
Ch. 8, 9]).

Length functions. Given X ∈ Teich(S), there is a unique continuous function

length: Teich(S)×ML(S) → R

written (X, µ) → lengthX(µ), with the property that for any isotopy class tγ ∈ R+×
S we have lengthX(tγ) = t `X(γ∗) where γ∗ is the unique geodesic representative
of γ on X (see [Th4], [Bon1, Prop. 4.5]).

Similarly, given (f : S → M) ∈ AH(S), if f∗(γ) is not parabolic in π1(M), then
the geodesic representative γ∗ exists and tγ has a well defined length

lengthM (tγ) = t `M (γ∗).

For µ ∈ R(M) realizable by a pleated surface (g, X) ∈ PS(M), Thurston extends
this notion of length to the length function which measures the length of µ in M
by setting

lengthM (µ) = lengthX(µ).
While the function lengthM (µ) is only defined on µ ∈ R(M), one important use

of the length function is to detect the non-realizability of a lamination. Indeed, for
weighted simple closed curves tγ, the function length(.)(tγ) extends continuously to
a function

length
(.)

(tγ) : AH(S) → R

that takes the value 0 on manifolds M ∈ AH(S) for which γ is a parabolic element
of π1(M).

More generally, following Thurston [Th4, Cor. 3.5] we define the function

length: AH(S)×ML(S) → R

on the full product AH(S)×ML(S) by setting length
M

(µ) equal to the lim inf of the
infima of the lengths of realizable laminations ν over closer and closer neighborhoods
of µ. Then zeros of length on AH(S) ×ML(S)+ are manifold-lamination pairs
(M, µ) for which no connected component of µ is realizable in M . As remarked,
it follows from [Th1, Ch. 9] [Bon1, Lem. 5.1] that when µ is connected length is
equal to the function

(M, µ) → lengthM (RM (µ))
on AH(S)×ML(S).

Train tracks. In [Th1], Thurston introduced train tracks as neighborhood systems
for measured and geodesic laminations. This theory is developed in detail in [PH].

A train track τ on a hyperbolic surface X is a 1-complex in X whose edges
(called branches) are C1 arcs, and whose vertices (called switches) carry the addi-
tional data of a tangent line to which all incident edges are mutually tangent at
their endpoints: with respect to a tangent vector v at a switch s along such a line
l, there are incoming and outgoing branches of τ , and an incoming and outgoing
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branch form a C1 arc tangent to v. We require s to have at least one incoming
and outgoing branch. Furthermore, we require that the double of each component
of X − τ along the interiors of the branches in its boundary has negative Euler
characteristic.

A train-path on τ is a monotone C1 immersion ρ : R → X (a “bi-infinite” train-
path) or ρ : S1 → X (a “closed” train-path) with image in τ . Given a geodesic
lamination λ on a hyperbolic surface X , we say τ carries λ if there is a differentiable
map p : X → X homotopic to the identity, and non-singular on the tangent spaces
to leaves of λ so that p(λ) ⊂ τ . In practice, this is equivalent to the existence of an
homotopy of each leaf ` of λ (rel-ideal endpoints) into τ through smooth arcs to a
train-path ρ : R → τ . We say τ minimally carries λ if for each branch b ⊂ τ there
is a leaf ` of λ whose corresponding train-path ρ contains b in its image. Train
tracks τ and τ ′ are equivalent if the inclusion of τ is homotopic to the inclusion of
τ ′ through train tracks on X . Equivalent train tracks carry the same laminations.

A train track τ∗ in a hyperbolic 3 manifold (f : S → M) ∈ AH(S) is a train
track τ on X ∈ Teich(S) together with a smooth map h : X → M compatible with
marking so that h(τ) = τ∗. The map h serves to mark the realization τ∗ of τ in M
with homotopy information from S. We say τ∗ ⊂ M carries a lamination λ if the
train track τ carries λ on X .

When a train track τ carries the support |µ| of a measured lamination µ we
will say it carries µ. Then µ assigns a mass mµ(b) to each branch b of τ by taking a
point x ∈ b and setting mµ(b) total mass of the measure associated to the transverse
arc p−1(x). The train track minimally carries µ if it minimally carries |µ|. In this
case mµ(b) 6= 0 for each b ⊂ τ . Assigning the weight mµ(b) to each branch b we
obtain a weighted train track.

If τ sits on a hyperbolic surface X , where each b has an arclength `X(b), the
track length

`τ (µ) =
∑
b⊂τ

mb(µ)`X(b)

bounds lengthX(µ) from above. Likewise, when τ is realized in the manifold M ∈
AH(S) with image τ∗, and each branch b ⊂ τ∗ has arclength `M (b) in M , the track
length

`τ∗(µ) =
∑
b⊂τ∗

mb(µ)`M (b)

bounds lengthM (µ) from above. (See [Bon1, §5] for a similar discussion of length
and train tracks).

Thurston’s Uniform Injectivity theorem. Given any hyperbolic manifold M ,
a point in its projective tangent bundle PM is determined by a pair (x, γ) of a point
x ∈ M and geodesic γ through x. Let

dP : PM ×PM → R

be the natural distance on PM so that dP ((x1, γ1), (x2, γ2)) is the maximum of the
minimal distance dM (x1, x2) from x1 to x2 in M and the minimal angle between
γ1 and the parallel transport of γ2 along the geodesic α joining x1 to x2 of length
dM (x1, x2).

Let M = (f : S → M) ∈ AH(S), and let (g, X) lie in PS(M). Since g∗(π1(X))
is an isomorphism, all surfaces (g, X) ∈ PS(M) satisfy the technical assumption of
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double incompressibility in the hypotheses of Thurston’s uniform injectivity theorem
which we may thus restate as follows:

Theorem 2.1 (Thurston). Uniform Injectivity Fix ε0 > 0. Then for every
ε there is a δ so that if M lies AH(S) and (g, X) ∈ PS(M) is a pleated surface
realizing λ ∈ GL(S), then for any two points x ∈ `x and y ∈ `y in leaves `x and `y

of λ with x and y in the thick part X≥ε0 we have

dP ((g(x), g(`x)), (g(y), g(`y))) ≥ δ

whenever dX(x, y) ≥ ε.

In [Min1], Y. Minsky obtains the following proportional relationship between ε
and δ in the above theorem. Note that his statement ([Min1, Lem. 2.3]) overlooks
a hypothesis which is that δ should be taken sufficiently small. Its uses in [Min1]
and here, which are similar, satisfy this hypothesis. We give the correct restatement
below.

For any arc α in a hyperbolic manifold N , let lengthN (α) denote the length of
the geodesic segment homotopic to α rel-endpoints.

Theorem 2.2 (Minsky). Proportional Injectivity There exists Cinj > 1
and δinj > 0 depending only on S so that for all δ < δinj the following holds: Let
M ∈ AH(S) and (g, X) ∈ PS(M) realize λ as above. Let x ∈ `x and y ∈ `y be
points on leaves `x and `y of λ with an arc α ⊂ X connecting them whose interior
meets neither `x nor `y. Then provided lengthM (g(α)) < δinj, we have

lengthX(α) < CinjlengthM (g(α)).

The constant δinj is determined by applying the uniform injectivity theorem
taking ε2 to be the 2-dimensional Margulis constant and setting ε = ε2/2; then for
lengthM (g(α)) less than the resulting δ = δinj, the above proportional relationship
holds.

To conclude this section, we apply uniform injectivity to give a proof of the
following theorem for use later. The theorem seems to be well known but has not
been formally published (see [Th1, Prop. 8.10.5]).

Theorem 2.3. Let M ∈ AH(S), and let λ ∈ GL(S) be realized by a pleated
surface (g, X) ∈ PS(M). Let l ⊂ X − λ be a complete geodesic asymptotic to λ in
each direction. Then there is a pleated surface (g′, X ′) ∈ PS(M) realizing λ t l.

Proof: Assume λt l is not realizable. Then a lift g̃ : X̃ → M̃ sends a lift l̃ of l to a
bi-infinite path that terminates at a single point p ∈ S2∞ in each direction. If l1 and
l2 are leaves of λ to which l is asymptotic in each direction, then l̃ is asymptotic in
X̃ to lifts l̃1 and l̃2 so that the geodesics g̃(l̃1) and g̃(l̃2) each have one end at p.

Since l̃ is asymptotic to l̃1 and l̃2 on X̃, and g̃(l̃1) and g̃(l̃2) are asymptotic in
H

3 , for any ε > 0 there are points x1 ∈ l̃1, x2 ∈ l̃2, and x′1, x′2 ∈ l so that

d
eX(x1, x

′
1) < ε, d

eX(x2, x
′
2) < ε, and dH3 (g̃(x1), g̃(x2)) < ε.

Thus, there is an arc α1 ∗ β ∗ α2 of length 3ε in H 3 where α1 joins g̃(x′1) and g̃(x1)
in g̃(̃(X)), β joins g̃(x1) and g̃(x2), and α2 joins g̃(x2) and g̃(x′2) in g̃(X̃). By
proportional injectivity, theorem 2.2, if ε is chosen sufficiently small β is homotopic
to an arc β′ in g̃(X̃) of length less than Cε.
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If l0 ⊂ l̃ is the geodesic segment between x′1 and x′2, then the loop

α1 ∗ β ∗ α2 ∗ g̃(l0)

bounds a disk in H 3 , which, by incompressibility of g, implies that

g−1(α1 ∗ β′ ∗ α2) ∗ l0

bounds a disk in X̃. But l0 is a geodesic segment in X̃, which may be made
arbitrarily long by choosing ε sufficiently small. A long geodesic followed by a short
arc cannot bound a disk in H 2 , so we have a contradiction

3. Controlling spiraling

Consider a sequence of weighted simple closed curves {tici} ⊂ ML(S) that
converges to a single weighted simple closed curve γ ∈ ML(S), with ci 6= γ. On a
fixed hyperbolic surface, ci must spiral increasingly about γ as i tends to infinity.
An important part of our argument will be to ensure that when γ is realizable in
the algebraic limit M of a convergent sequence Mi ∈ AH(S), the realizations of
ci in Mi spiral increasingly towards the realization of γ in Mi, in an appropriate
sense. Due to the phenomena alluded to in the introduction that may arise in the
geometric limit of the manifolds Mi, we require a very sensitive measure of this
spiraling.

Relative twisting. In [Min3] Minsky defines a notion of the relative twisting of
a pair of isotopy classes α and β in S relative to another isotopy class γ ∈ S which
α and β each intersect.

To make the discussion clear, we fix a hyperbolic structure X ∈ Teich(S) for
reference and pass freely from isotopy classes in S to their geodesic representatives
on X . Let γ be a simple closed geodesic on X and let α and β be distinct simple
closed geodesics on X such that i(α, γ) and i(β, γ) are each non-zero. Then following
[Min3] we define the relative twisting

τγ(α, β)

of α and β relative to γ to be interval in Z of width at most 2 as follows: let
G ∈ π1(X) ⊂ Isom+

H
2 be an indivisible hyperbolic element of π1(X) stabilizing a

lift γ̃ of γ to the universal cover X̃ = H
2 . Let fix(G) denote the fixed points of G.

Now consider the annular cover Xγ of X corresponding to 〈G〉. Let

Xγ = H
2 ∪ (S1

∞ − fix(G))/〈G〉
denote Xγ with its ideal boundary adjoined. Consider lifts α̃ of α and β̃ of β

to Xγ that cross γ, together with their endpoints ∂(α̃) and ∂(β̃) at infinity. Let
x(α̃, β̃) denote the number of intersections of α̃ and β̃ reckoned positively if β̃ is
more leftward of γ than α̃, in the sense that β̃ crosses α̃ from right to left on Xγ

(this depends only on the orientation on S, not on orientations for the curves γ, α
and β). Since any two lifts of α to Xγ do not intersect, and likewise for β, the
range of values for x(α̃, β̃) lies in an interval of Z of width 2 (see figure 2). We let
τγ(α, β) denote this interval in Z. Since these quantities are naturally determined
by separation properties of pairs of points on the circle at infinity S1∞, the interval
τγ(α, β) does not depend on the choice of underlying hyperbolic structure.
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γ
β̃′

β̃

α̃′ α̃

Xγ

Figure 2. Relative twisting. Here x(α̃, β̃) = 1, x(α̃′, β̃) = 2, and x(α̃, β̃′) = 0. Thus
τγ(α, β) = [0, 2] ⊂ Z.

Our interest will be in coarse properties of τγ(α, β) so we let σγ(α, β) ∈ τγ(α, β)
be the integer with least absolute value in τγ(α, β).

The important properties of τγ(α, β) are easily verified (see [Min3, Lem. 1]);
we translate them into properties of στ (α, β). Given a, b ∈ R, Q ∈ R+ , let a �Q b
denote |a− b| ≤ Q.

Lemma 3.1 (Minksy). Let α, β and δ in S have non-zero geometric intersection
with γ ∈ S on the oriented hyperbolic surface X. Then we have
RT1 Intersection bounds twisting:

|σγ(α, β)| ≤ i(α, β) + 1

RT2 Quasi-additivity:

σγ(α, δ) �5 (σγ(α, β) + σγ(β, δ)) .

Simplicial hyperbolic surfaces. We employ the technique of continuous families
simplicial hyperbolic surfaces in hyperbolic 3-manifolds (see [Th1, Ch. 8] [Bon1]
[Can, §5]). Let Singk(S) denote the marked singular hyperbolic structures on S,
i.e. complete, finite-area, marked surfaces Y that are hyperbolic away from at most
k ≥ 0 cone singularities each with cone angle at least 2π, up to marking preserving
isometry. Given Y ∈ Singk(S) let T be a ‘triangulation’ of Y with geodesic edges
terminating at singularities if Y is singular, and at punctures of Y if Y has cusps
(T is a triangulation of a punctured surface in the sense of Canary [Can, §3]). Let
N be a hyperbolic 3-manifold. Then a path-isometry h : Y → N is a simplicial
hyperbolic surface with associated triangulation T if it is a local isometry on Y −T .

Given M ∈ AH(S), we let SHk(M) denote the marking-preserving simplicial
hyperbolic surfaces h : Y → M so that Y ∈ Singk(S). When a simplicial hyperbolic
surface (h : Y → M) ∈ SHk(M) maps an edge of T representing γ ∈ S to its
geodesic representative γ∗ in M , we say h realizes γ. If, in addition, T only has
one non-ideal vertex (necessarily lying in γ) we say T and h are adapted to γ.

A theorem of Hatcher [Hat] guarantees that there is a finite sequence of ele-
mentary moves where one edge changes at a time relating any two triangulations
adapted to γ, and furthermore that these moves can be chosen to preserve γ. By a
theorem of Canary, there is a continuous family {(ht : Yt → M)} ⊂ SHk+1(M) of
simplicial hyperbolic surfaces interpolating between simplicial hyperbolic surfaces
(h0 : Y0 → M) and (h1 : Y1 → M) in SHk(M) whose associated triangulations
differ by precisely such an elementary move (see [Can, Lem. 5.3], figure 3). The
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Figure 3. An elementary move on a triangulation is realized by a continuous family of
simplicial hyperbolic surfaces with one greater singularity.

associated triangulations for ht agree with those for h0 and h1 except for the edge
involved in the elementary move, so we may combine these results to interpolate
between simplicial hyperbolic surfaces adapted to γ through surfaces realizing γ:

Theorem 3.2. Let (h0 : Y0 → M) and (h1 : Y1 → M) in SH1(M) be simplicial
hyperbolic surfaces adapted to γ ∈ S. Then there is a continuous family (ht : Yt →
M) in SH2(M) so that ht realizes γ for each t.

(See [Min4, §4] for a similar discussion).
Given γ ∈ S, and a simplicial hyperbolic surface (h : Y → M) ∈ SHk(M), we

define lengthY (γ) to be the length of the unique geodesic representative of γ in the
singular hyperbolic metric on Y .

Pinched negative curvature. The collar lemma (see e.g. [Bus, Thm 4.4.6])
guarantees that for any L there is a K so that two simple closed geodesics of
length less than L on a surface X ∈ Teich(S) have intersection number less than
K; i.e. K does not depend on X . Since, however, simplicial hyperbolic surfaces
can have concentrated negative curvature it is straightforward to build sequences
of simplicial hyperbolic surfaces on which pairs of curves with length bounded by
L have intersection number that grows without bound.

Since each (h : Y → M) ∈ SHk(M) is incompressible (h∗ is injective), the
non-singular hyperbolic metric on M remedies the situation.

Lemma 3.3. For any L > 0 there is a J > 0 such that for any M ∈ AH(S) and
(h : Y → M) ∈ SHk(M) for which α and β in S each have length on Y bounded by
L, the geometric intersection number i(α, β) is bounded by J .

Proof: Let (h : Y → M) ∈ SHk(M), and let α and β have geodesic representatives
of length less than L on Y with images α̂ and β̂ under h. Assume that i(α, β) 6= 0
since the theorem is trivial otherwise.

Fix a point x ∈ α̂ ∩ β̂. We establish the following lemma for future reference:

Lemma 3.4. For all L there is an ε such that the following holds. Let α and
β in S have non-zero geometric intersection. Then if α̂ and β̂ are intersecting
rectifiable representatives of α and β in M ∈ AH(S) with lengths `M (α̂) and `M (β̂)
each less than L, then their union α̂ ∪ β̂ lies in the ε-thick part M≥ε.

Proof: Let ε3 be the Margulis constant for dimension 3. Since α and β deter-
mine non-commuting elements of π1(S), the curves α̂ and β̂ cannot lie in the same
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component of the thin part M<ε3 . This means the union α̂ ∪ β̂ can only penetrate
a distance at most L into M<ε3 . By the collar lemma for hyperbolic 3-manifolds
(see [BM, §4]), any sufficiently short closed geodesic γ in M admits an embedded
metric tubular neighborhood whose radius depends only on the length of γ, and
tends to ∞ as the length of γ tends to 0. It follows that there is an ε ∈ (0, ε3) so
that α̂ ∪ β̂ lies in M≥ε.

It follows from lemma 3.4 that there is an embedded ball B(x, ε) of radius ε at x
in M . Lift the picture to the universal cover H 3 so that x lifts to the origin. Then
all covering translations of B(0, ε) are disjoint in H

3 . There are i(α, β) distinct
translates of 0 that are joined to 0 by paths of length bounded by 2L that lie in
lifts of α̂ and β̂ (these paths descend to homotopically distinct closed loops in M
based at x). There are thus at least i(α, β) disjoint copies B(0, ε) within the ball
B(0, 2L + ε) of radius 2L + ε of the origin. It follows that there can be at most

vol(B(0, 2L + ε))
vol(B(0, ε))

(3.1)

translates of x by π1(M) within the ball B(0, 2L). Setting J equal to the quotient
in line 3.1 we have

i(α, β) < J.

Let X ∈ Teich(S) be a hyperbolic surface and γ ∈ S. Let

shortγ(X) =
{

ξ ∈ S
∣∣ i(ξ, γ) > 0 & lengthX(ξ) = min

{ν∈S | i(γ,ν)>0}
lengthX(ν)

}
be the “shortest curve(s) on X crossing γ.” When (h : Y → M) ∈ SHk(M) is
a simplicial hyperbolic surface, define shortγ(Y ) similarly. Generically, shortγ(X)
will consist of a single isotopy class, but two (or more) isotopy classes can tie to be
the shortest.

Lemma 3.5. Let S be compact surface of negative Euler characteristic. Then
for all ε > 0 there is a Dε so that if Y ∈ Singk(S) and γ ∈ S satisfies lengthY (γ) > ε
then any α ∈ shortγ(Y ) satisfies

lengthY (α) < Dε.

Proof: The general simplicial hyperbolic case (k ≥ 0) follows from the hyperbolic
case (k = 0), which we treat first. We differentiate these cases by using X ∈
Teich(S) to denote our hyperbolic surface and Y ∈ Singk(S) to denote our possibly
singular hyperbolic surface.

By a theorem of Bers [Bus, Thm. 5.2.6] is a constant BS depending only on
S so that any X ∈ Teich(S) admits a decomposition into pairs of pants by closed
geodesics of length less than BS . Give X such a decomposition. If lengthX(γ) is
greater than BS then it must have non-zero intersection with such a decomposing
geodesic. If lengthX(γ) ≤ BS then by the collar lemma, there is a w such that
the closed metric annular neighborhood Nw(γ∗) of width w on each side with core
geodesic γ∗ is embedded on X .

Fatten Nw(γ∗) by increasing w to either the width where the two boundary
components of Nw(γ∗) become tangent to one another or, the width where one
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boundary component of Nw(γ∗) becomes self tangent. In the latter case, continue
to increase the width of the component of Nw(γ∗)− γ∗ that is still embedded until
its boundary develops a self-tangency or a tangency with the original self-tangent
boundary component.

Let wε denote the larger of the two radii of the sides of the annulus on either
side of γ∗. The value of wε depends only on ε and the area of X (which depends only
on the genus of S). This process produces a closed annular neighborhood Aγ with
embedded interior so that either each boundary component is tangent to itself, or
the two boundary components are tangent to each other. Take the shortest route
back from the tangency or the two self-tangencies to γ∗ and connect by segments
of γ∗ to form a curve α that has no essential self-intersections. One may check by
convexity of Nw(γ∗) that α lies in S with i(α, γ) 6= 0. Clearly,

lengthY (α) ≤ 4wε + 2BS .

Now let Y ∈ Singk(S) be a singular hyperbolic surface such that lengthY (γ) >
ε. The induced singular hyperbolic metric on Y has a natural conformal structure.
Let g be the hyperbolic metric on Y in the same conformal class as the singular
hyperbolic metric s on Y . Since the cone singularities of s have angle at least 2π,
a lemma of Ahlfors [Ah] guarantees that the metric g is pointwise greater than or
equal to s.1 Thus, if X ∈ Teich(S) is the surface corresponding to g then we have
lengthX(γ) > ε as well.

By the above we again have lengthX(α) ≤ 4wε + 2BS , so by Ahlfors’ lemma
the length in the singular hyperbolic metric s on Y lengthY (α) satisfies the same
bound. Set 4wε + 2BS equal to Dε to prove the theorem.

Uniform twisting. We are now ready to prove the main theorem of this section
(a closely related result appears in [Min4]). Our particular formulation of the
theorem refers to a certain simplicial hyperbolic surface which may at first seem
arbitrary. We remark that this surface will be of particular use in the context of
algebraically convergent manifolds Mi → M in AH(S), where it will record the
convergent geometry of generators for π1(Mi) (see corollary 3.9).

Theorem 3.6. Uniform Relative Twisting For any L > 0 there is a K >
0 depending only on L, S so that the following holds: given α, γ ∈ S with i(α, γ) 6= 0,
M in AH(S), and a simplicial hyperbolic surface (h : Y → M) ∈ SH1(M) adapted
to γ such that lengthY (α) < L, then for any pleated surface (g, X) ∈ PS(M) such
that lengthX(γ) < L, any αX ∈ shortγ(X) satisfies

|σγ(αX , α)| < K.

Proof: Let (g, X) ∈ PS(M) be a pleated surface with lengthX(γ) < L. The
simplicial hyperbolic surface (h : Y → M) realizes γ, so we have lengthY (γ) =
lengthM (γ), the length of the geodesic representative of γ in M . Thus, α and γ
both have length bounded by L on Y . Since i(α, γ) 6= 0, lemma 3.4 guarantees there
is an ε(L), depending only on L, so that α∪γ as they sit on Y lie in M≥ε(L)/2. This
means the geodesic representative γ∗ of γ in M lies in M≥ε(L)/2 (again, because h
realizes γ) and thus lengthM (γ) > ε(L).

1Thanks to Yair Minsky and Curt McMullen for bringing this to the author’s attention.
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Let αX lie in shortγ(X). By lemma 3.5 there is a Dε(L) so that

lengthX(αX) < Dε(L).

By lemma 3.3, there is a J1 depending only on max{L, Dε(L)} (which depends only
on L) such that

i(αX , γ) < J1.(3.2)

Form a simplicial hyperbolic surface adapted to γ from αX as follows: Let x be a
basepoint for M on γ∗. Let α′X and γ′ be the images of the geodesic representatives
of αX and γ under the pleated mapping g : X → M . Since lengthM (γ) > ε(L)
there is a homotopy from γ′ to γ∗ in M all of whose tracks have length bounded
by RL. Let x′ ∈ γ′ be joined to x by a track of this homotopy. Modify α′X by a
homotopy on X as follows: At each intersection p ∈ α′X ∩ γ′, introduce a detour
along γ′ that takes the shortest route to x′ and then returns to p. Using these
detours, form a homotopy of α′X to a curve α̂X on X freely homotopic to αX

given as a concatenation of loops based at x′ that are disjoint away from x′ on X .
Extend γ′ ∪ α̂X to a triangulation TX of X with no new vertices. Form a simplicial
hyperbolic surface (ĥ : X̂ → M) ∈ SH1(M) by pulling γ′ tight to γ∗, pulling TX

tight to a 1-complex T
bX with vertex at x that contains the closed geodesic γ∗, and

using T
bX as the associated triangulation for ĥ : X̂ → M .

We have
`X(α̂X) < Dε(L) + i(αX , γ)2L,

and thus, since i(αX , γ) < J1 setting L′ = Dε(L) + J12(L + RL) gives

length
bX(αX) < L′,

where L′ depends only on L.
Applying theorem 3.2, we have a continuous family (ht : Yt → M), t ∈ [0, 1] of

simplicial hyperbolic surfaces such that h0 = ĥ and h1 = h (from the hypotheses)
all of which realize γ∗, i.e. the associated triangulation for ht has an edge in the
isotopy class γ that it maps to γ∗.

Let B ⊂ S be the set of isotopy classes β with i(β, γ) 6= 0 such that

lengthYt
(β) < Dε(L)

for some t ∈ [0, 1]. Since γ∗ lies in M≥ε(L)/2, and all elements β ∈ B have a
representative intersecting γ∗ in M of length less than Dε(L), the constant

ML =
volB

(
0, L + Dε(L) + ε(L)/2

)
volB (0, ε(L)/2)

,

which depends only on L (cf. lemma 3.3), gives the bound |B| < ML, where |B|
denotes the number of elements of B. By lemma 3.5, for each t ∈ [0, 1] there is a
β ∈ B with lengthYt

(β) < Dε(L).
Let U(β) ⊂ [0, 1] denote the subset

U(β) = {t ∈ [0, 1] | lengthYt
(β) < Dε(L)}.

Since the length of an isotopy class β ∈ S varies continuously on Yt, the union
∪β∈BU(β) gives an open cover of [0, 1]. If 0 lies in U(β1), β1 ∈ B, then either
1 ∈ U(β1) or the least upper bound t(1) of U(β1) lies in U(β2) for some β2 ∈ B,
β2 6= β1. Continuing inductively, we find a non-repeating sequence {βj}k

j=1 ⊂ B,
k < ML, so that

lengthY1
(βk) < Dε(L),
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and so that if t(j) is the least upper bound of U(βj), j < k, then we have,

max{lengthYt(j)
(βj) , lengthYt(j)

(βj+1)} ≤ Dε(L).(3.3)

Hence, by lemma 3.3 we have the intersection number bound

i (βj , βj+1) < J2(3.4)

for j = 1, . . . , k − 1, where J2 depends only on L.
To treat the ends of the sequence, we have

max{length
bX(β1), length

bX(αX)} < L′

on X̂, while on Y we have

max{lengthY (βk), lengthY (α)} < max{L, Dε(L)}.
Thus by lemma 3.3 there are constants, J3 and J4 depending only on L so that

i(αX , β1) < J3 and i(βk, α) < J4.

Let J = maxi=1,... ,4 Ji.
From lemma 3.1 (RT1) it follows that

|σγ (βj , βj+1)| < J + 1

for each j = 1, . . . , k − 1 and moreover that

|σγ (αX , β1)| < J + 1 and |σγ (βk, α)| < J + 1.

By repeated applications of lemma 3.1 (RT2) we have

σγ (αX , α) �5k σγ(αX , β1) +
k−1∑
j=1

σγ (βj , βj+1) + σγ(βk, α),

so by the triangle inequality

|σγ (αX , α) | ≤ |σγ(αX , β1)|+
k−1∑
j=1

|σγ (βj , βj+1) |+ |σγ(βk, α)| + 5k.

The bound

|σγ(αX , α)| < (J + 1)(k + 1) + 5k

follows. Since J and k depend only on L, setting K = (J + 1)(k + 1) + 5k proves
the theorem.

We wish to use the metric independent quantity σγ(α, β) to control a metric
dependent quantity: namely, when simple closed geodesics c and γ cross on X ∈
Teich(S), we want to measure the amount c winds around a small metric annular
neighborhood of γ.

When a metric X ∈ Teich(S) is fixed, the annular cover Xγ corresponding to
γ admits a foliation F(γ) by complete geodesics perpendicular to the core geodesic
γ. We may compute the relative twisting of c with respect to this foliation

σX
γ (c,F(γ))

by counting the number of intersections of a leaf l of F(γ) and a lift c̃ of c to Xγ that
intersect least, reckoned positively if c̃ winds to the right about Xγ and negatively
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if c̃ winds to the left. Given ε for which the ε-collar Nε(γ) embeds in X , we define
the winding of c about Nε(γ)

W(ε,X)(c, γ) ∈ Z
by only counting the contributions to σX

γ (c,F(γ)) that come from intersections
within Nε(γ) on Xγ . More generally, if a ⊂ Nε(γ) is an arc joining boundary
components of Nε(γ), the winding W(ε,X)(., γ) is defined on the homotopy class [a]
of a rel-boundary by taking the geodesic representative a∗ of a rel-endpoints on X ,
and counting the minimal number of intersections with any leaf of F(γ).

Let lengthX(γ) lie in the interval [δ, L], where δ > 0. The collar lemma (see
[Bus, Thm. 4.4.6]) guarantees that there is an εL > 0 so that given any collection
γ1, . . . , γp of pairwise disjoint simple closed geodesics on X , and ε < εL the ε-collars
Nε(γ1), . . . ,Nε(γp) embed disjointly in X . Then we have the following.

Lemma 3.7. For any ε < εL, there is a constant K(ε, δ) so that if αX ∈
shortγ(X), we have

W(ε,X)(c, γ) �K(ε,δ) σγ(c, αX).

Proof: We first remark that W(ε,X)(αX , γ) = 0 since otherwise every arc of αX ∩
Nε(γ) winds all the way around the annulus Nε(γ), and performing a Dehn twist
on Nε(γ) shortens αX .

To compare the winding of a general curve c about Nε(γ) with the winding of
αX about Nε(γ) we apply the following lemma:

Lemma 3.8. There is a constant K1(ε, δ) > 0 so that given any pair of complete
geodesics l1 and l2 on Xγ , the number of intersections of l1 and l2 outside the ε-
neighborhood Nε(γ) on Xγ is bounded by K1(ε, δ).

Proof: This is seen by lifting to the universal cover H 2 and considering the number
of γ-translates of a lift l̃1 of l1 that can intersect a lift l̃2 within H 2 −Nε(γ̃): let Q
be the ideal quadrilateral obtained as the convex hull of the ideal endpoints of γ̃

and l̃2 on H 2 . If l̃1 does not cross γ̃ and is not asymptotic to γ̃ then at most two
γ-translates of l̃1 cross l̃2 on H 2 .

If on the other hand l1 either crosses γ̃ or is asymptotic to γ̃, then for each k

such that γk(l̃1) crosses l̃2 outside of Nε(γ̃), the translate γk(l̃1) intersects ∂Nε(γ̃)
within Q. (see figure 4). The total arc length of the intersection of ∂Nε(γ̃)
with the interior of Q is bounded by a constant bε > 0 depending only on ε. The
translation distance of γ on ∂Nε(γ̃) is fixed and greater than δ. Thus, the number
of intersections of translates of l1 by γ that intersect l2 is bounded by bε/δ which
we set equal to K1(ε, δ).

Proof of lemma 3.7 continued: It follows from lemma 3.8 that all but at most
K1(ε, δ) intersections of a lift c̃ and a leaf l of F(γ) occur within Nε(γ) on Xγ .
Thus, we have that

W(ε,X)(c, γ) �K1(ε,δ) σX
γ (c,F(γ)),

and
σX

γ (F(γ), αX) �K1(ε,δ) W(ε,X)(αX , γ) = 0.
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∂Q =

X̃

Nε(γ̃)

γ̃

γ−1(l̃1)
l̃1

γ(l̃1)

l̃2

Figure 4. Contributions to relative twisting outside Nε(γ) are uniformly bounded in
terms of ε and the length of γ.

From lemma 3.1, we have

σX
γ (c,F(γ)) + σX

γ (F(γ), αX) �5 σγ(c, αX).

It follows that
W(ε,X)(c, γ) �2K1(ε,δ)+5 σγ(c, αX).

The lemma follows setting K(ε, δ) = 2K1(ε, δ) + 5.

We are now ready to apply theorem 3.6 to the setting of algebraically convergent
manifolds Mi → M . Recall that we denote by R ⊂ AH(S) ×ML(S) the set of
pairs (M, µ) for which µ is realizable in M .

Corollary 3.9. Let (Mi, γ) converge to (M, γ) in R. Let (gi, Xi) ∈ PS(Mi)
and (g, X) ∈ PS(M) be pleated surfaces all realizing γ, and let ε > 0 be sufficiently
small so that the metric annular neighborhood Nε(γ) of γ on Xi is embedded for
each i. Then there is a constant Aε > 0 so that

W(ε,X)(c, γ) �Aε W(ε,Xi)(c, γ)

for any c ∈ S.

Proof: Since (Mi, γ) → (M, γ) in R there exists L > δ > 0 so that lengthMi
(γ)

lies in the interval [δ, L] for all i. Taking ε < εL ensures that the ε-collar Nε(γ) is
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embedded on Xi. Let (γ∗)i denote the geodesic representative of γ in Mi, it follows
that there is a δ′ > 0 depending only on L and δ so that (γ∗)i always lies within
(Mi)≥δ′ . Thus we may choose baseframes ωi ∈ Mi on the geodesic representatives
(γ∗)i of γ in Mi that determine holonomy representations ρi : π1(S) → Isom+(H 3 )
so that ρi(g) converges for each g ∈ π1(S). As we shall apply theorem 3.6 later, we
now choose a reference curve α ∈ S so that i(γ, α) 6= 0.

Realize the isotopy classes of α and γ on X as geodesics with the same names.
Let p ∈ γ denote a basepoint for π1(S). As in the proof of theorem 3.6, form a based
representative α̂ of α at p once and for all by finding the shortest route along γ from
each intersection point x ∈ α ∩ γ to p, homotoping α so that all intersections of α
and γ occur at p and so that α−p is embedded. Extend γ∪p∪ α̂ to a triangulation
T of X with no new vertices, and pull T back to S via the marking on X .

There are simplicial hyperbolic surfaces (hi : Yi → Mi) ∈ SH2(Mi) so that
1. each hi is adapted to γ with associated triangulation T .
2. the vertex p ∈ T maps to |ωi|.
If α̂ is represented in π1(S, p) as the composition of edges g1 ◦ . . .◦ga of T , then

by algebraic convergence ρi converges on each gb, b = 1, . . . , a, so the translation
distance of ρi(gb) at the origin ω̃ ∈ H

3 converges. There is thus an L′ > 0 so
that `Mi(α̂) is bounded by L′ for all i. Moreover, the length of α on the simplicial
hyperbolic surface Yi remains uniformly bounded by L′ throughout the sequence.
Let L0 = max{L, L′}.

For each i, the data γ, α, Yi and Mi together satisfy the hypotheses of theo-
rem 3.6 with length bound L0, so there is a uniform K (depending only on L0 (and
S)), so that for any sequence of pleated surfaces (gi, Xi) ∈ PS(Mi) realizing γ and
curves αi ∈ shortγ(Xi), we have the bound

|σγ(αi, α)| < K(3.5)

on the relative twisting of αi and α with respect to γ.
By lemma 3.7 we have

W(ε,Xi)(c, γ) �K(ε,δ) σγ(αi, c)

and
W(ε,X)(c, γ) �K(ε,δ) σγ(α, c)

so letting Aε = 2K(ε, δ) + K + 5 we have

W(ε,X)(c, γ) �Aε W(ε,Xi)(c, γ).

Let λ be a geodesic lamination containing a simple closed curve γ. If λ is a
limit of simple closed curves ci 6= γ, then leaves of λ spiral either to the right or
to the left as they approach γ. We say λ is to the right of γ or to the left of γ
respectively.

Corollary 3.10. Let Mi, M , γ, Xi, X, and ε be as above. Let ci ∈ S, ci 6= γ,
be simple closed curves converging to a lamination λ in GL(S) containing γ as a
simple closed leaf. Then W(ε,X)(ci, γ) → +∞ (resp. −∞) if λ is to the right (resp.
left) of γ, and

lim
i→∞

W(ε,Xi)(ci, γ)
W(ε,X)(ci, γ)

= 1.
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γ γ

λ is to the right of γλ is to the left of γ

Figure 5. Geodesic laminations to the left and to the right of γ.

Proof: For any N > 0 there is an r > 0 so that any ci crossing γ that lies within the
r-neighborhood Nr(λ) on X crosses every leaf in the foliation of Nε(γ) by geodesic
arcs orthogonal to γ at least N times. Moreover, any such ci winds to the right if λ
is to the right of γ and to the left if λ is to the left of γ. By Hausdorff convergence,
for i sufficiently large ci lies in Nr(λ) and ci crosses γ. It follows that W(ε,X)(ci, γ)
tends to +∞ if λ is to the right of γ and W(ε,X)(ci, γ) tends to −∞ if λ is to the
left of γ.

Applying corollary 3.9, we have W(ε,X)(ci, γ) �Aε W(ε,Xi)(ci, γ) for each i; it
follows that

lim
i→∞

W(ε,Xi)(ci, γ)
W(ε,X)(ci, γ)

= 1.

4. Constructing nearly straight train tracks

In the next two sections, we develop geometric estimates on nearly-straight train
tracks which we will use to control the lengths of laminations in varying families
of hyperbolic 3-manifolds. This section develops and formalizes basic elements of
constructing nearly-straight train tracks. The reader may wish first to peruse sec-
tions 6 and 7, in which the main theorems are proven, to motivate the constructions
of the next two sections.

Definition 4.1. Let ε > 0 be less than 1. A train track τ in a hyperbolic
manifold Mn, n = 2, 3, is ε-nearly-straight if any train path r : R → τ lifts to a C2

embedding r̃ : R → M̃n with geodesic curvature less than ε.

A train track τ ⊂ X has an ε-nearly-straight realization τ∗ in Mn if τ is
equivalent to an ε-nearly-straight train track τ∗ in Mn.

Features of nearly straight train tracks. From standard hyperbolic geometry,
an ε-nearly-straight train track τ∗ in hyperbolic n-manifold Mn has two important
features:

1. For any δ0 < 1 there is a tracking constant C > 1 so that for each ε < δ0,
any train path r : R → τ∗ or r : S1 → τ∗ lifts to a train path r̃ : R →
PH n , that is smoothly isotopic to a geodesic by an isotopy that moves each
point a distance less than Ctrε in PH n . Taking δ0 = 1/2, let Ctr be the
corresponding tracking constant.

2. There is a continuous contraction bound

K : [0, 1) → [1,∞)
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so that if ε ∈ [0, 1) and µ ∈ML(S) is carried by τ∗, we have

lengthMn(µ) ≥ 1
K(ε)

`τ∗(µ)

and K(ε) tends to 1 as ε tends to 0.
One criterion to determine whether a given train track τ has an ε-nearly straight

realization is to form its associated train track graph τ̂ by straightening its branches
to geodesics rel-switches. We call the external angles of τ̂ the angles that can occur
as the external angles of the lift to the universal cover of the image of a train-path
under this straightening. For any definite length ` > 0 there is a δ` > 0 and a
constant Ccurv(`) so that if the edges of τ̂ have length at least `, and all external
angles are bounded by ε ∈ (0, δ`), then τ admits a (Ccurv(`)ε)-nearly-straight real-
ization. We call such a train track graph (`, ε)-nearly-straight (cf. [Min1] [CEG,
Thm. 4.2.10]).

Horocyclic spike-foliations. We now give a direct construction of nearly straight
train tracks carrying a lamination µ. The idea is this: given a lamination on a
surface X , we construct a partial foliation of a neighborhood of µ on the surface.
The leaves of the lamination are like “train-routes” running along transverse to the
leaves of this foliation, which are like “ties” of the train track. Collapsing the leaves
of the foliation, we have a graph τ on X that represents our train track. Each leaf
of µ naturally determines a train-path on τ , so τ carries µ.

We will develop a substantial amount of geometric control on such foliations
in order to control the straightness of the resulting train tracks in the above sense.
The straightness will depend on the metric on X , which will later vary. Uniformity
will come from

• requiring that |µ| lie in the thick part X≥ε0 , and
• requiring for any compact leaf γ of |µ| that lengthX(γ) < L.

We will introduce various geometric constants in what follows, all of which will
depend at most on S, ε0, and L.

To start, let λ ∈ GL(S) be a geodesic lamination on X with no compact leaves.
The completion X − λ of the path metric on X − λ has a finite number of ends
where frontier leaves of λ, namely leaves in ∂(X − λ), are asymptotic. A spike s of
X−λ is an open neighborhood of such an end that lies to one side of a horocyclic arc
α orthogonal to the asymptotic leaves of λ that determine the end. The horocyclic
arc α is called the frontier horocycle of the spike s, and its arclength `X(α) is called
the width of the spike s. The number of disjoint spikes is bounded by a constant
Cspike depending only on S.

Any collection of spikes of X − λ with widths less than 1 are pairwise disjoint.
Each spike s of X − λ admits a foliation by parallel horocycles limiting to the
frontier horocycle for s.

Let s1, . . . , sj be spikes of X − λ, one for each end of X − λ, with widths
ε1, . . . , εj all less than 1. Following Thurston [Th1, §8.9], the horocyclic folia-
tions of the spikes s1, . . . , sj naturally extend to a foliation Fint of the interior
int(s1 ∪ . . . ∪ sj) on X obtained by extending the union of the horocyclic folia-
tions across λ: the tangent line field along leaves of the foliations of each spike
extends continuously to a Lipschitz line field on int(s1 ∪ . . . ∪ sj), which is inte-
grable, and thus Fint is well defined (see [Th5, §3] [Bon3, pp. 244]). Denote by
|Fint| = int(s1 ∪ . . . ∪ sj) the support of Fint.
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The foliation Fint extends to a decomposition F of the closure s1 ∪ . . . ∪ sj into
“leaves” which are extensions of the leaves of Fint: If x ∈ ∂|Fint| lies in a frontier
leaf ` of λ, we call x an endpoint of the leaf l of Fint whose tangent line field limits
to the orthogonal line to x at `. Let l̂ denote the union of l with its endpoints.2

Then we obtain the elements of the decomposition F with the following two steps:
1. If the endpoints of l do not meet the boundary ∂α of any frontier horocycle

α, then l̂ is a generic leaf of F .
2. Each frontier horocycle αk determines a pair l̂k and l̂′k with endpoints at

∂αk. Each connected component of ∪k(αk ∪ l̂k ∪ l̂′k) is a leaf of F , which we
call a switch leaf (figure 6).

We call the resulting decomposition of s1 ∪ . . . ∪ sj , into generic leaves and switch
leaves the horocyclic spike-foliation F for λ. The decomposition F is almost a
foliation of s1 ∪ . . . ∪ sj : it is a foliation away from its “corners” at the finite set of
endpoints of the frontier horocycles (see figure 6). We denote by |F| the closed

λ

switch leaf

Figure 6. A horocyclic spike-foliation for λ.

set s1 ∪ . . . ∪ sj on X which we call the support of the horocyclic spike-foliation F .
We define moves on horocyclic spike-foliations by adjusting the widths of the

spikes. Given r ∈ R, we define the r-adjustment of F on the spike sk to be the
spike-foliation obtained by adjusting the width εk of the spike sk to be erεk. The
r-adjustment is always well-defined, or allowable, provided we constrain r so that
erεk < 1. Under an r-adjustment on a spike sk, the frontier horocycle αk moves a
signed distance r outward along the frontier leaves of λ at its endpoints.

Each switch leaf l of F contains a frontier horocycle of F in some spike s (see
figure 6). A transverse branch b is a closed geodesic segment of a leaf ` of λ so
that ∂b lies in switch leaves of F and the interior of b does not intersect any switch
leaves of F . Two switch leaves l1 and l2 of F are adjacent when they are joined by
a transverse branch b. Any two transverse branches joining l1 and l2 that meet the
same leaves of F have the same length.

Let Fε(λ) denote the horocyclic spike-foliation for λ on X with all widths equal
to ε. A horocyclic spike-foliation is generic if each switch leaf contains exactly one
frontier horocycle. Since Fε(λ) fails to be generic for only countably many ε, we will
always assume ε is chosen so that Fε(λ) is generic. Two generic horocyclic spike-
foliations F and F ′ are equivalent if there is a family of generic spike-foliations
interpolating between them obtained by continuously varying the widths of F .

Train tracks from spike-foliations. A horocyclic spike-foliation F for λ deter-
mines a train track λ/F carrying λ: specifically, F determines a differentiable map

2A priori, leaves of Fint may be half-infinite or bi-infinite; we show each leaf of F (and hence
Fint) has finite length in lemma 4.2.
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p : X → X , homotopic to the identity and nonsingular on the tangent spaces of
leaves of λ, so that p collapses each leaf l of F to a point on X (see [Th1, §8.9]).
The image p(λ) is a train track τ ; the image p(b) of a transverse branch b of F is
a branch of τ , and the image p(l) of each switch leaf l of F is a switch v of τ . The
train track τ minimally carries λ (see figure 7, which depicts a simple collapsing.
Note that a leaf of F may intersect λ in a Cantor set).

λ ∪ F τ = λ/F

Figure 7. Collapsing horocyclic spike-foliations.

Here is a more direct construction the train track τ = λ/F : consider a collection
of transverse branches so that each leaf of F that is not a switch leaf intersects
precisely one transverse branch. Then, assuming F is generic, each switch leaf
contains exactly three endpoints of transverse branches. Given a switch leaf l,
choose a vertex vl on l. Given a transverse branch b with an endpoint x in l,
modify b by a smooth isotopy through arcs meeting l orthogonally that pulls x
along l to the vertex vl and fixes a neighborhood of the other endpoint of b. The
resulting arc meets l at a right angle at vl. Performing similar isotopies at each
end of each transverse branch of F in such a way that the interiors of the branches
remain pairwise disjoint, we obtain the branches of a train track τ on X with
switches vl for each switch leaf l of F (see figure 8). Equivalent spike-foliations

b •
•

l l′

• vl

• vl′
x

τ = λ/F

Figure 8. Building a train track out of transverse branches and switch leaves of F .

for λ collapse to equivalent (indeed, smoothly ambient isotopic) train tracks.
We will now concern ourselves primarily with the case λ = |µ| where µ ∈

ML(S) is a measured lamination with no compact leaves. Using information about
F , such as the lengths of its switch leaves and transverse branches, we can impose
some geometric control on the resulting train-track τ = |µ|/Fε(µ). As one expects,
however, geometric quantities associated to F on X (and thus to τ = |µ|/F) de-
pend strongly on X . We will control this dependence by bounding from below the
injectivity radius along the leaves of |µ|.

Lemma 4.2. Short Leaves Given ε0 > 0 and the surface S, there are con-
stants Csw > 1 and εsw > 0 so that the following holds: if µ ∈ ML(S) is a
measured lamination with no compact leaves, X ∈ Teich(S) is a hyperbolic surface
with |µ| ⊂ X≥ε0 , and F is a horocyclic spike-foliation for µ on X whose largest
width is ε < εsw, then any leaf l of F satisfies `X(l) < Cswε.
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Proof: We begin by noting that since |µ| has 2-dimensional Lebesgue measure 0
on X [Th2, Prop. 5.3], the area of |F| is the sum of the areas of the spikes for F .
Since the area of a spike is equal to its width, we have:

areaX (|F|) < Cspikeε.

Moreover, the length `X(l) is the sum
∑

i `X (li) over the (countably many) com-
ponents li of the intersection l ∩ (X − |µ|). Each component li cuts off a sub-spike
σi of the spike ski of X − |µ| to one side, ki = 1, . . . j.

First of all, let ε′0 < 1 be such that N1 (X≥ε0) lies within X≥ε′0 . Then we have
|F| ⊂ X≥ε′0 for ε < 1. Lifting l to l̃ in the universal cover H 2 , we consider any
interval I of points in l̃. At each point y ∈ I ∩ l̃i consider the geodesic arc gy of
length ε′0/2 orthogonal to l̃ traveling from y into the lifted sub-spike σ̃i cut off by
l̃i. Let

A(I) = {gy|y ∈ I ∩ (∪i l̃i)}
denote closure of the union of all these geodesic segments, and note that

areaH2 A(I) = `H2 (I)(1 − e−ε′0/2).

Assume `X(l) > ε′0 and let x̃ ∈ l̃ be the center of an interval I0 of length ε′0 in
l̃ (measured along l̃). Each point in A(I0) lies within ε′0 of x̃, so A(I0) embeds in
the covering projection π : H 2 → X . Thus we have

areaX(π(A(I0))) = `X(π(I0))(1− e−ε′0/2) = ε′0(1− e−ε′0/2) < Cspikeε.

Therefore, if

ε <
ε′0(1− e−ε′0/2)

Cspike
= εsw,

the above ensures that `X(l) ≤ ε′0.
Assume, then, that ε < εsw. If x ∈ l is the midpoint of l (with respect to

distance along l) then A(l̃) again embeds under the covering projection to X so we
have

areaX(π(A(l̃))) = `X(l)(1 − e−ε′0/2) < Cspikeε.

Setting

Csw =
Cspike

1− e−ε′0/2

proves the lemma.

While we have no guarantee that taking ε sufficiently small provides uniform
separation of switch leaves of Fε(µ), we will in practice be able to modify Fε(µ) by
uniformly bounded adjustments in spikes to obtain uniform separation. This is the
import of the following lemma:

Lemma 4.3. Definite Branch Lengths Given ε0 > 0 and the surface S,
there are constants `0 > 0, Cadj > 0, and εadj > 0 so that the following holds:
if µ ∈ ML(S) is a lamination with no compact leaves, and X ∈ Teich(S) is a
hyperbolic surface for which |µ| lies in X≥ε0 , then for any positive ε < εadj the
horocyclic spike-foliation Fε(µ) is equivalent by r-adjustments in spikes, |r| < Cadj,
to a horocyclic spike-foliation F ′ for which:

1. each transverse branch has length at least `0, and
2. any leaf l of F ′ satisfies `X(l) < eCadjCswε.
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Proof: We first argue that any train-path for τ = |µ|/Fε(µ) that is homotopic to
an embedding is homotopically essential in X .

To see this, add finitely many complete geodesics to the support of µ to obtain
a complete geodesic lamination |µ|′: the complementary regions of |µ|′ are all ideal
hyperbolic triangles embedded in X (see [Th1, Ch. 8]). The horocyclic spike-
foliation F̂ = F1(|µ|′) (each spike has width 1) restricts to a foliation of int(|F̂ |),
which is all of X but closed triangular regions bounded by horocycles in each
complementary ideal triangle of X − |µ|′ (see figure 9). Each leaf of Fε(µ) or any

Figure 9. Collapsing a maximal horocyclic spike-foliation to a singular foliation.

allowable adjustment of Fε(µ) is contained in a leaf of F̂ .
There is a natural collapsing map for the triangular components of X − |F̂|

obtained by identifying each point x in such a region with the point(s) in the frontier
horocycles at minimal distance from x. The image of F̂ under this collapsing is a
singular foliation F̂sing of X with one 3-pronged singularity at the center of each
ideal triangle in X − |µ|′ (see figure 9).

Any train-path on τ that is homotopic to an embedded simple closed curve in
X is homotopic to an embedded loop p : S1 → X that avoids the singularities of
the foliation F̂sing and is transverse to F̂sing. If p bounds an embedded disk D in
X , then F̂sing restricts to a singular foliation transverse to ∂D. By the Poincaré
index formula [Th3, Prop. 1.3.10], the Euler characteristic of D is given by the sum
of the indices of the singularities of F̂sing inside of D. Since 3-prong singularities
have negative index (-1/2), and the Euler characteristic of D is positive we have a
contradiction. We conclude that p is homotopically essential.

Let Cbr be the upper bound on the number of branches to τ (which depends
only on S). As before, choose ε′0 < 1 so that N1(X≥ε0) lies in X≥ε′0 . Assume

ε <
ε′0εsw

Csw2Cbr exp(ε′0/4Cbr)
= εadj,

where Csw and εsw are from lemma 4.2, and let

Cadj = ε′0/4Cbr.

Then we have the following observations: if F ′ is obtained from Fε(µ) by successive
r-adjustments in distinct spikes with |r| < Cadj we have

• the support |F ′| of F ′ lies in X≥ε′0 ,• each switch leaf of F ′ has length less than ε′0/2Cbr (see lemma 4.2), and
• each leaf of F ′ is contained in a leaf of F̂ .
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We now argue that for ε so chosen, that we can perform r-adjustments in spikes to
Fε(µ), with |r| < Cadj, to obtain a horocyclic spike-foliation F ′ equivalent to Fε(µ)
each transverse branch of which has length at least

`0 =
ε′0

Cbr4Cbr+1
.

For the purposes of the argument we think of the train-track τ as providing
a schematic for these adjustments to Fε(µ): we label each branch b ⊂ τ with the
corresponding length of the transverse branches that collapse to b. Then performing
an r-adjustment in a spike corresponding to a switch v of τ corresponds to increasing
(decreasing) the length assigned to each incoming branch to v by the same amount
that we decrease (increase) the length of each outgoing branch (we assume Fε(µ)
is generic, so each switch v has exactly 3 branches incident on it). For the rest
of the argument the “length” of a branch b of τ will refer to the length of the
corresponding transverse branch.

Given k, 0 ≤ k ≤ Cbr − 1, call a branch b “k-short” if b has length less than
ε′0/Cbr4k+1 and “k-long” otherwise. We say two branches b1 and b2 of τ are adjacent
at a switch v if there is a train path through v that traverses b1 and b2 in succession.

We argue by induction on k = 0, . . . , Cbr − 1. We claim that by performing
r-adjustments, with |r| < Cadj, in at most k distinct spikes of Fε(µ) we can obtain
an equivalent spike-foliation Fk with at least k branches that are k-long, and so
that Fk has the following property:

(*) if Fk has any k-short branch, we can find a k-short branch b0 so that either
b0 is adjacent at one side to two k-long branches b1 and b2, or on one side
b0 is adjacent to a single branch b1, and b1 is k-long.

b1b0

v

b1

b2

b0

vor

Figure 10. We may always lengthen a k-short branch b0 by shortening only two
adjacent k-long branches b1 and b2 or a single adjacent k-long branch b1.

(See figure 10).
Let Fε(µ) = F0. We first argue that any spike-foliation Fk equivalent to F0

satisfies (∗). Otherwise, any k-short branch of Fk is adjacent to a k-short branch at
each end. Then we can form a closed train-path in τ beginning at a k-short branch
b0 that always follows an adjacent k-short branch. By a pigeon-hole argument, after
traversing at most 2Cbr k-short branches, this train path can be closed to form a
single closed train path pshort that traverses only k-short branches. If pshort is not
homotopic to an embedding, one may check that performing successive surgeries to
eliminate crossings produces a train-path that is homotopic to an embedding and
still traverses only short branches.

The requirement of monotonicity in the definition of a train-path prevents
doubling back at a switch. This guarantees that pshort is homotopic to a closed
path p′short : S1 → |Fk| that runs along segments of leaves of |µ| and then jumps
between leaves of |µ| by running along switch leaves of Fk in such a way that p′short

enters and exits on opposite sides of each switch leaf of Fk. Since each leaf of Fk
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is contained in a leaf of F̂ , the path p′short can be perturbed in an arbitrarily small
neighborhood of the switch leaves to an embedding p′′short : S1 → |F̂| transverse
to F̂ so that the length of p′′short differs from that of p′short by an arbitrarily small
amount.

But p′′short, being transverse to F̂ , is homotopically non-trivial in X and lies
in X≥ε′0 . Thus p′′short has length at least 2ε′0, so p′short also has length at least 2ε′0.
Since p′short consists of an alternating sequence of at most 2Cbr transverse branches
and switch leaves, and the above choice of ε guarantees that each switch leaf has
length at most ε′0/2Cbr, the total length of p′short along the transverse branches is
at least ε′0. Thus pshort must traverse a branch of length at least ε′0/2Cbr, which is
a contradiction, since pshort was assumed only to traverse k-short branches.

For k = 0, the contradiction implies that there is at least one branch with
length at least ε′0/4Cbr, so we take F0 = F1, and F1 satisfies (∗). Assume Fk is
a spike foliation with at least k branches that are k-long, and Fk is equivalent to
F0 by r-adjustments in spikes, with |r| < Cadj. Then Fk satisfies (∗), so if Fk

has any k-short branch b0, performing an
(
ε′0/(Cbr4k+2)

)
-adjustment at v we may

lengthen b0 by ε′0/(Cbr4k+2) (figure 10) while shortening only k-long branches and
shortening them by the same amount. The inequality

ε′0
Cbr4k+1

− ε′0
Cbr4k+2

>
ε′0

Cbr4k+2
,

implies that the branches b0, b1, and b2 all have length at least ε′0/(Cbr4k+2) after
the adjustment, and the adjustment does not change the equivalence class of Fk

(note that by induction we have not already adjusted v or each branch incident on
v would be k-long). Thus, we have a new equivalent spike-foliation Fk+1 (which
also satisfies (∗)) obtained by at most k + 1 r-adjustments in distinct spikes, with
|r| < Cadj, and Fk+1 has at least k + 1 branches that are (k + 1)-long.

By induction, then, the spike-foliation F ′ = Fk+1 is equivalent to Fε(µ) by r-
adjustments in distinct spikes, with |r| < Cadj, and has the property that each trans-
verse branch has length at least `0. Since each adjustment is uniformly bounded by
Cadj, each switch leaf has length at most exp(Cadj)Cswε. This proves the lemma.

Carrying laminations with compact leaves. A general lamination µ ∈ML(S)
may have compact leaves: each such leaf is an isolated simple closed geodesic. Let
µ = µctµm be the decomposition of µ into its maximal sublaminations all of whose
leaves are compact and non-compact, respectively.

Let ε0 be so that |µ| ⊂ X≥ε0 . Choose ε sufficiently small to satisfy the hy-
potheses of lemmas 4.2 and 4.3 (ε less than εadj will do). Let F ′ be the horocyclic
spike-foliation for µm on X guaranteed by lemma 4.3, and let τm be the train track
|µm|/F ′. Letting |µc| = γ1 t . . . t γp, the disjoint union τ = τm t γ1 t . . . t γp

is a train track that carries µ. For future reference, equip each closed branch γq,
q = 1, . . . , p, with a single switch vq. In lemma 4.5, we will argue that τ can
be made nearly-straight in X . To avoid repetition, however, we first develop a
technique to enlarge τ so that τ and its enlargement may be simultaneously made
nearly-straight (cf. [Min1, §2]).

Enlarging train tracks. Given a weighted simple closed curve tc ∈ML(S) that
is close to µ, we might be fortunate enough that the above train track τ also carries
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c; if τ were nearly-straight, this would tell us the length of tc is close to that of µ.
In general, however, bits of c may lie far away from µ on X ; c need not be carried
by τ . To make a train-track carry more laminations we enlarge it:

Definition 4.4. An enlargement of a train-track τ on X is a train-track τ̌
obtained by adding branches to τ at switches of τ .

The need to enlarge τ is related to the fact that the support of a measured
lamination |µ| ∈ GL(S) is not a continuous function of the measured lamination µ.
A non-Hausdorff weakening of the topology on GL(S) called the Thurston topology
is given by the following topology of convergence on a fixed surface X ∈ Teich(S)
(see [CEG, 4.1.10]):

• λi → λ if for each x ∈ λ, there are xi ∈ λi so that xi → x.

Notice that the Thurston topology is not Hausdorff: a neighborhood of λ in the
Thurston topology contains all geodesic laminations λ′ such that λ ⊂ λ′. The
Thurston topology is readily seen to give a notion of convergence on GL(S) inde-
pendent of X (see [CEG, §4]), but we keep the metric X in the picture for the
moment.

Given X and a measured lamination µ, geodesic laminations ν in a very close
neighborhood of |µ| in the Thurston topology have leaves that make very small
angles with leaves of |µ|. Following Thurston, we define a projection map [Th5, §6]
sending any such ν to the ‘closest’ geodesic lamination that contains |µ|, as follows.

For ν sufficiently close to |µ| in the Thurston topology, define

cut(X,|µ|)(ν) ∈ GL(S)

to be the geodesic lamination obtained by cutting X along |µ|, and for each geodesic
α ⊂ (ν ∩ (X − |µ|)) either

1. discarding α if it lies in a close neighborhood of |µ| on X ,
2. extending each remaining α to a bi-infinite piecewise geodesic α∞ by adding

the half-infinite segment of the leaf of |µ| at each endpoint of α that makes
the smallest external angle with α, and

3. straightening each α∞ rel-ideal endpoints to a geodesic α∗∞ asymptotic to
|µ| in each direction.

Taking the union of the complete geodesics α∗∞ with |µ| (see figure 11)3 yields a
geodesic lamination cut(X,|µ|)(ν) ∈ GL(S) containing |µ|.

X − |µ|

ν −→ cut(X,µ)(ν)
Figure 11. The projection map cut(X,µ).

3A similar figure appears in [Th5, pp. 24]
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Given a convergent sequence µi → µ in ML(S), any limit λ of |µi| in GL(S)
(with the Hausdorff topology) contains |µ| (see e.g. [Otal, A.3.2]). Hence for any
sublamination λ ⊂ |µ|, the supports |µi| converge to λ in the Thurston topology.

In particular, given a sequence µi ∈ ML(S) of measured laminations tending
to µ, cut(X,|µ|)(|µi|) is well defined for all i sufficiently large, as is cut(X,λ)(|µi|)
for any sublamination λ ⊂ |µ|. For simplicity of notation, we will suppress the
distinction between µ and its support |µ| in the definition of cut and use the notation
cut(X,µ)(µi) = cut(X,|µ|)(|µi|).

The map cut(X,µ)(.) depends strongly on the hyperbolic structure X . We will
always fix X in our discussion. Given X , let UX(µ) ⊂ GL(S) be a sufficiently
close neighborhood of |µ| in the Thurston topology so that cut(X,µ)(.) is well de-
fined. Then UX(µ) contains the supports of all measured laminations in a close
neighborhood of any lamination containing µ as a sublamination.

The case of a simple closed curve c differs from the case of a general lamination
ν in that cut(X,|µ|)(c) is obtained from |µ| by adding finitely many isolated leaves
that either spiral towards closed leaves of |µ| or tend out a cusp of X − |µ|. Given
a simple closed geodesic c ∈ UX(µ), we use the lamination λ = cut(X,µ)(c) to
construct an enlargement τ̌ of τ which will carry both µ and c.

To this end, let |µc| = γ1t . . .tγp as above, and assume each leaf γq has length
bounded by L on X . Then there is an ε′L depending only on L so that for ε < ε′L the
annuli Nε(γ1), . . . ,Nε(γp) are pairwise disjoint, embedded on X , and disjoint from
Fε(µm). Let Fε(µc) denote the foliation of these neighborhoods by geodesic arcs
orthogonal to |µc|, and denote by Fε(µ) the union of the horocyclic spike-foliation
Fε(µm) and the foliation Fε(µc).

Let F = F ′ t Fε(µc). Given λ and F , we define the train track λ/F by
enlarging τ as follows: given an arc α of λ ∩ (X − |F|), each endpoint of α lies
either in a switch leaf l of F ′ or in ∂Nε(γq) for some γq. As in the construction of
τm above, we may modify α by a smooth isotopy to become an additional branch
for τ : if an endpoint x of α lies in a switch leaf l, perturb α through arcs meeting
l orthogonally until it meets l at the vertex vl. If x lies in ∂Nε(γq), continue α
geodesically until it meets the leaf lq of Fε(µc) containing vq, and then smoothly
perturb α through arcs that meet lq at a definite angle to an arc that ends at vq and
meets lq orthogonally. Performing these modifications for each arc of λ∩ (X − |F|)
so that the resulting arcs are pairwise disjoint and disjoint from τ away from their
endpoints, we obtain an enlargement τ̌ of τ which we call λ/F . The track τ̌ is well
defined up to equivalence and is equivalent to λ/Fε(µ).

λ
τ ′

Nε(γq) vq ⊂ γq

Figure 12. Enlarge τ at a closed branch γq by attaching at vq.

Lemma 4.5. Nearly Straight Given ε0 > 0, L > 0 and the surface S, there
are constants Cns > 1 and εns > 0 so that the following holds: let µ ∈ ML(S) be
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a measured lamination realized by a pleated surface (g, X) ∈ PS(M), with g(|µ|) ⊂
M≥ε0 and lengthX(γ) < L for each compact leaf γ of µ. Let c be a simple closed
curve in UX(µ) and let λ = cut(X,µ)(c). If (gλ, Xλ) ∈ PS(M) realizes λ and Fε(µ)
is taken on Xλ, then for positive ε < εns the train track

τ = λ/Fε(µ)

has Cnsε-nearly-straight realizations both in Xλ and in M .

Remark: Note that the above lemma contains the case when λ = |µ| by taking c
sufficiently close to |µ| in the Hausdorff topology.

Proof: Assume we have chosen ε < εadj < εsw; i.e. sufficiently small to satisfy
the hypotheses of lemmas 4.2 and 4.3. We first consider the case λ = |µ|, and take
Xλ = X . The hypotheses imply that |µ| lies in X≥ε0 .

Letting µ = µm t µc and letting τm = |µm|/F ′ be the train track described
above (as guaranteed by lemma 4.3), we seek to determine the straightness of τm

by applying the conclusions of lemma 4.3.
Let τ̂m denote the train track graph on X associated to τm (recall, τ̂m is obtained

by straightening branches of τm to geodesics rel-endpoints). By lemma 4.3, the
transverse branches of F ′ have length at least `0 and the switch leaves of F ′ have
length at most eCadjCswε, so by lemma 4.3 the resulting edges of τ̂m have length at
least

`0 − 2eCadjCswε;
choosing

ε <
`0

4eCadjCsw

ensures each edge of τ̂m has length at least `0/2.
If two transverse branches b1 and b2 are adjacent at a switch leaf l, an elemen-

tary hyperbolic trigonometry argument shows there is a constant Ctrig depending
on `0/2 (which depends only on ε0) so that if the switch leaves have length less
than some εtrig > 0 depending only on `0/2, the train track graph τ̂m has external
angles bounded by

Ctrig · (maximum length of switch leaves);

in other words, if ε < εtrig/
(
eCadjCsw

)
then the train track graph has external

angles bounded by Ctrig

(
eCadjCswε

)
on X . Likewise, since transverse branches of

τ̂m

b2
µm

b1

l

switch leaf

Figure 13. The train track graph τ̂m for τm has small external angles.

F ′ are segments of the pleating locus for (g, X), if we straighten the image of each
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edge of τ̂m under g to a geodesic in M rel-endpoints we obtain a train track graph
(τ̂m)∗ with external angles bounded by Ctrig

(
eCadjCswε

)
in M . The existence of

Ctrig follows from the fact that nearby points x and y on leaves `x and `y of a
geodesic lamination λ realized on a pleated surface (g, X) ∈ PS(M), have lifts
(x, `x) and (y, `y) to PX and lifts (g(x), g(`x)) and (g(y), g(`y)) to PM whose
distance is bounded by a constant times the distance between x and y on X (which
bounds the distance in M).

Thus for ε less than min{εadj, `0/(4eCadjCsw), εtrig/(eCadjCsw)}, the train track
graph τ̂m is

(
`0/2, Ctrige

CadjCswε
)
-nearly-straight in X , and straightening the im-

age of each branch of τ̂m under g rel-endpoints to geodesics in M produces a(
`0/2, Ctrige

CadjCswε
)
-nearly-straight train track graph (τm)∗ in M .

Add the closed geodesic leaves γq, q = 1, . . . , p, each with its switch vq, to
obtain an enlarged train track τ and let τ̂ denote its associated train track graph on
X . Since we have only added geodesic branches, τ̂ is still an

(
`0/2, Ctrige

CadjCswε
)
-

nearly-straight train track graph, and likewise for (τm)∗ ∪q g(γq) in M .

We now consider the case when |µ| is a proper sublamination of λ. If (gλ, Xλ) ∈
PS(M) is a pleated surface realizing λ then the image gλ(|µ|) is identical to g(|µ|).
Thus, gλ(|µ|) lies in M≥ε0 , so |µ| lies in (Xλ)≥ε0 . We may again, therefore, apply
the conclusions of lemma 4.3; let F ′ be the spike-foliation equivalent to Fε(µm) on
Xλ that is guaranteed by lemma 4.3.

For each γ ⊂ |µc|, lengthX(γ) lies in [2ε0, L]. Decrease ε if necessary so that ε <
e−Cadjε′L. This ensures F ′ and Fε(µc) are disjoint on Xλ, so we let F = F ′tFε(µc)
as above, but taken now on Xλ rather than X . Decreasing ε further if necessary so
that ε < e(−`0−Cadj)ε′L, we ensure that arcs of λ ∩ (Xλ − |F|) have length at least
`0. If β is an arc of λ∩ (Xλ − |F|), β is a segment of a leaf of λ that is asymptotic
to |µ| ⊂ λ. Thus, it is close at its endpoints to leaves of |µ| in PXλ. Moreover,
since (gλ, Xλ) realizes λ, the image gλ(β) is a geodesic arc in M that is close at its
endpoints to the realization gλ(|µ|) in PM .

Straightening branches of τ = λ/F rel-endpoints, then, produces a train-track
graph τ̂ associated to λ/F that is again

(
`0/2, Ctrige

CadjCswε
)
-nearly-straight in Xλ.

Likewise, the graph (τ̂ )∗ obtained by straightening the image of each edge under
the mapping gλ rel-endpoints in M is again a

(
`0/2, Ctrige

CadjCswε
)
-nearly-straight

train track graph associated to λ/F in M .
To promote the above nearly-straight train track graphs to nearly-straight train

tracks, recall from the beginning of this section that given ` > 0 there are constants
Ccurv(`) > 1 and δ` > 0 so that if ε < δ` and τ̂ is an (`, ε)-nearly-straight train
track graph associated to τ in Xλ or in M , then τ admits a Ccurv(`)ε-nearly-straight
realization in Xλ or in M .

Provided, then, that ε is bounded above by

min
{

εadj,
`0

4eCadjCsw
,

εtrig
eCadjCsw

,
ε′L

e(`0+Cadj)
,

δ`0/2

CtrigeCadjCsw

}
= εns,

which depends only on ε0 and L, it follows that in each of the above cases τ admits
Ccurv(`0/2)Ctrige

CadjCswε-nearly-straight realizations in Xλ and in M . The lemma
follows by setting Cns = Ccurv(`0/2)Ctrige

CadjCsw.
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5. Uniform estimates for train tracks

In this section, we harness theorem 2.2 and the results of section 3 to obtain
uniform geometric estimates for train tracks in hyperbolic 3-manifolds. The discus-
sion is technical at points, so we again encourage the reader to peruse sections 6
and 7 for motivation.

When enlarging train tracks in a 3-manifold M ∈ AH(S), it will be convenient
for us to remove the requirement that the added branches come from a train track
on X :

Definition 5.1. Let τ be a train-track in M ∈ AH(S). A generalized enlarge-
ment τ̌ of τ is obtained by adding C1 arcs to τ whose endpoints lie at switches of τ
so that for any new arc b added at a switch v of τ , there is a branch b′ of τ incident
on v so that b ∪ b′ forms a C1 arc through v.

A train-path on a generalized enlargement τ̌ is a C1 monotone immersion
r : R → M or r : S1 → M with image in τ̌ so that r is obtained by concatenating
branches of τ and additional arcs used to form τ̌ . If τ̌ is a generalized enlargement
of τ in M , then τ̌ carries λ if there is a smooth marking-preserving map f : X → M
so that for each leaf ` of λ, f |` is homotopic (rel-ideal endpoints) through smooth
immersions to a train-path on τ̌ . As with train tracks, given ε ∈ (0, 1) a generalized
enlargement τ̌ of τ is ε-nearly-straight (cf. definition 4.1) if each train path r on τ̌
is C2 with geodesic curvature less than ε.

When a generalized enlargement τ̌ of τ in M carries a simple closed curve c, the
weight deposited by c on a branch b depends a priori on the train-path we choose
to carry c; if č : S1 → τ̌ is a train path on τ̌ homotopic to c, we denote by mb(č)
the number of times the train path č traverses the branch b. In what follows, there
will always be an explicit train-path č on which c is carried by τ̌ , so there will be no
ambiguity in the weight mb(č) deposited on b. If tc ∈ ML(S) is a weighted simple
closed curve, let mb(tč) = tmb(č), and define the track length of tč in M to be

`τ̌ (tč) =
∑
b⊂τ̌

mb(tč)`M (b).

Applying the results of the previous section, we now prove the lemma which
serves as the central technical tool of the paper. This lemma generalizes a con-
struction of Minsky [Min1, Thm. 2.4].

Lemma 5.2. Train Tracks Let (Mi, tici) → (M, µ) in AH(S) ×ML(S) so
that the realizable part µr = RM (µ) of µ lies in ML(S)+.

Let (g : X → M) ∈ PS(M) be a pleated surface realizing µr and let L1 and ε1
be positive constants so that g(|µr|) lies in M≥ε1 and each compact leaf γ of |µr|
has length `X(γ) < L1. Then there are constants C > 1 and εtt > 0 depending at
most on S, ε1 and L1 so that for each positive ε < εtt there exists:

1. a train track τ minimally carrying µr with an ε-nearly-straight realization
τ∗ in M ,

2. an integer Nε > 0 so that for all i > Nε, τ admits a realization τi in Mi with
a Cε-nearly-straight generalized enlargement τ̌i so that ci is carried by τ̌i on
a train-path či for which if b is a branch of τ , we have mb(tiči) → mb(µ).
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Remark: In statement (2) of lemma 5.2 we abuse notation slightly and drop the
distinction between a branch b of τ and its realization in Mi as a branch of the
train track τi or its generalized enlargement τ̌i.

Proof: Give µr the decomposition

µr = µm t µc,

into µc, its maximal sublamination all of whose leaves are compact (weighted simple
closed curves), and µm, its maximal sublamination all of whose leaves are infinite.
For convenience, we use the notation

νm = |µm| and νc = |µc|.
The proof occurs in three steps below. In Step I, we construct the train track

τ with its nearly-straight realization τ∗ in M and use algebraic convergence to
provide realizations of τ in Mi for all i > Nε. In Step II, we treat the cases
when µr = µc and µr = µm independently, constructing enlargements τi of τ with
Cε-nearly-straight realizations in Mi for all i > Nε; the first case employs the
results of section 3, while the second case adapts the analogous result of Minsky
[Min1, Thm. 2.4] to the setting of algebraic convergence using theorem 2.2. In
Step III, we create a kind of convex combination or melding of the nearly-straight
enlargements obtained for each case of Step II to form generalized enlargements
of the nearly-straight realizations of τ in Mi; this final step makes direct use of
Thurston’s uniform injectivity theorem (theorem 2.1).

Constants: Let ε0 > 0 be such that for any hyperbolic 3-manifold we have

N1(M≥ε1) ⊂ M≥ε0,

(see [BM]), and let L = 2L1. Using ε0, and L as the constants with the same names
in the hypotheses of lemma 4.5, we assume ε < min{εns, 1/2Ctr} from lemma 4.5
noting that εns depends only on S, ε0 and L, and that Ctr is universal. In particular,
we may now apply the lemmas of the previous section to the realization of µr on
the pleated surface (g, X) ∈ PS(M).

Step I: building τ . Letting ε′ = ε/Cns, lemma 4.5 guarantees that taking Fε′(νm)
on X , the train track τm = νm/Fε′(νm) can be realized as an ε-nearly-straight train
track τ∗m in M .

We write νc as the disjoint union νc = γ1 t . . . t γp of simple closed geodesics
γq on X . Introduce a single switch vq on each γq, q = 1, . . . , p to obtain a train
track τc carrying νc. The union τ = τm t τc is an ε-nearly-straight train track in X
carrying µr. Let τ∗c be the union of (geodesic) images of each γq equipped with its
switch vq in M under the pleated mapping g. Then the union

τ∗ = τ∗m ∪ τ∗c
is an ε-nearly-straight realization of τ in M that carries µr.

By algebraic convergence (see section 2, [Mc, §3.1]), given a compact subset
K ⊂ M that contains τ∗ and g(X≥ε1), there are smooth, marking-preserving ho-
motopy equivalences qi : M → Mi that tend C∞ to a local isometry on K. Begin
by taking Nε sufficiently large so that for all i > Nε we have

• ‖qi‖C1 < 2 on K, and
• the image qi(α) of any C2 arc α in K with geodesic curvature less than ε

has geodesic curvature less than 2ε.
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Then the image qi(τ∗) determines a 2ε-nearly-straight train track (τ∗)i in Mi made
up of 2ε-nearly-straight train tracks (τ∗c )i and (τ∗m)i determined by the images
qi(τ∗c ) and qi(τ∗m). Likewise, the image qi(`) of any leaf ` of |µr| lifts to a bi-infinite
arc in H 3 that is homotopic to its geodesic representative rel-ideal endpoints by a
homotopy that moves each point a distance less than Ctr2ε for all i > Nε.

Since ε satisfies ε < 1/(2Ctr), the lamination µr is realized in (Mi)≥ε0 for all
i > Nε. This implies, in particular, that for any pleated surface (gi : Xi → Mi) ∈
PS(Mi) that realizes µr, the support |µr| lies in (Xi)≥ε0 .

Finally, we note that since L = 2L1, we have

lengthMi
(γq) < L

for each γq ⊂ νc and all i > Nε. Thus we are in a position to apply the lemmas of the
previous section to the realizations of µr on any sequence (gi : Xi → Mi) ∈ PS(Mi)
of pleated surfaces realizing µr in Mi, once i > Nε.

In step II, we apply lemma 4.5 to build enlargements of (τ∗)i that carry ci.
To do this, we must build pleated surfaces realizing the laminations cut(X,µr)(ci)
in Mi; we must first ensure these laminations are well-defined and realizable. We
enlarge Nε if necessary so that ci ∈ UX(µr) for all i > Nε (so cut(X,µr)(ci) is well
defined), and since µr is realizable in M and in Mi for all i > Nε, we may apply
theorem 2.3 to conclude that cut(X,µr)(ci) is realizable in M and in Mi.

Step II: Assume µr has all leaves compact or all leaves infinite.
Case (i): each leaf of µr is compact. In this case, |µr| = νc = γ1t. . .tγp. Let i > Nε,
and assume ci 6= γq since otherwise there is nothing to prove. Let λi = cut(X,νc)(ci),
and consider the pleated surfaces (gi, Xi) ∈ PS(Mi) realizing λi. By the above, for
each γ ⊂ νc it follows that lengthXi

(γ) < L and γ lies in (Xi)≥ε0 for all i > Nε.
Since we have assumed ε < εns, we may for such i consider the union of embedded
annuli Nε(νc) on Xi together with its foliation Fε(νc). By lemma 4.5, the train
track

(τ̌c)i = λi/Fε(νc)
is an enlargement of τc with a Cnsε-nearly-straight realization (τ̌∗c )i in Mi.

It remains to show that (τ̌c)i carries ci and that given a branch b of (τ̌c)i that
is also a branch of τ , the weight on mb(tici) deposited by tici on b converges to
mb(µ). By corollary 3.10, if we pass to any subsequence (without loss of generality)
so that ci converges in the Hausdorff topology to λ′ ∈ GL(S), given γ ⊂ νc the
lamination λ′ is either to the right or left of γ (see figure 5) and we have

W(ε,Xi)(ci, γ) → +∞ or −∞
respectively. Moreover, for such a subsequence λi is either to the right or to the
left of γ for all i sufficiently large.

By the definition of λi, we may modify ci to a piecewise geodesic pi on Xi so
that pi ∩ (Xi −Nε(νc)) consists of arcs of λi ∩ (Xi −Nε(νc)) and Ai = pi ∩Nε(νc)
is a collection pairwise disjoint geodesic arcs each of which crosses the annular
component of Nε(νc) in which it lies (figure 14 depicts the lifted picture on X̃i).

Since lengthXi
(γ) > ε0 for each i and each simple closed geodesic γ ⊂ νc,

modifying ci to pi changes the winding about Nε(γ) a uniformly bounded amount:
given a ∈ Ai for which a ⊂ Nε(γ), one may check that the constant K1(ε, ε0) from
lemma 3.8 gives the uniform comparison

W(ε,Xi)(a, γ) �2K1(ε,ε0) W(ε,Xi)(ci, γ).
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p̃i

λ̃i

ã

c̃i

Nε(ν̃c)

Figure 14. The lift p̃i of the polygonal path pi runs along λ̃i outside of Nε(ν̃c).

It follows that we may enlarge Nε so that for all i > Nε any such arc a makes
at least two full trips around the annulus Nε(γ); thus (τ̌c)i carries ci. Each arc
a ∈ Ai that crosses Nε(γ) contributes to the weight mb(ci) deposited on the branch
b ⊂ γ. This contribution is uniformly comparable to the winding W(ε,Xi)(a, γ), so
summing over arcs in Ai that cross Nε(γ) and applying the above, we have

i(ci, γ)W(ε,Xi)(ci, γ) �(i(ci,γ)2K1(ε,ε0)) mb(ci)

for all i > Nε. Multiplying by the weight, then, we have that

ti i(ci, γ)W(ε,Xi)(ci, γ) �(ti i(ci,γ) 2K1(ε,ε0)) mb(tici).

Since tici → µ, we have tii(ci, γ) → 0, so

lim
i→∞

ti i(ci, γ)W(ε,Xi)(ci, γ)
mb(tici)

= 1.

Since the weight mb(µ) deposited by µ on b is simply a real weight on the simple
closed curve γ, on the fixed surface X we have

ti i(ci, γ)W(ε,X)(ci, γ) → mb(µ).

Applying corollary 3.10, we have that the ratio of the winding of ci about Nε(γ)
on Xi and X satisfies

lim
i→∞

W(ε,Xi)(ci, γ)
W(ε,X)(ci, γ)

= 1.

It follows that limi→∞ mb(tici) = mb(µ) for each branch b of τ .

Case (ii): each leaf of µr is infinite. This case follows from the analogous theorem
of Minsky [Min1, Thm. 2.4] adapted to the setting of algebraic convergence; we
reprise the argument.

In this case we have |µr| = νm. Let F = Fε′(νm), and let ĉi be the geodesic
representative of ci on X . Then for i sufficiently large, each arc β of ĉi ∩ (X − |F|)
either lies entirely within the ε′-neighborhood Nε′(νm) on X or ∂β lies in frontier
horocycles of F . Enlarge Nε if necessary so this holds for all i > Nε. For such i, let
Bi denote the subset of the collection of arcs ĉi ∩ (X − |F|) that do not lie entirely
in Nε′(νm).

Similarly to the above, let

λi = cut(X,νm)(ci).

Then for each β ∈ Bi, if α and α′ are the frontier horocycles at its endpoints, β is
homotopic with endpoints constrained to (α t α′) into a leaf `β of λi. Thus, the
train track

(τ̌m)i = λi/F
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is an enlargement of τm = νm/F (obtained by adding a branch bβ to τm for each
β ∈ Bi) that carries νm and ci.

Given a branch b of (τ̌m)i that is a branch of the sub-track τm, the weight
mb(tici) comes from the transverse measure of tici on a short arc transverse to νm

that cuts across Nε′(νm). Since the weighted simple closed curves tici converge as
measured laminations on X to µ, the transverse measures determined by tici on
this short arc converge weakly to the transverse measure determined by µ. Thus
we have mb(tici) → mb(µ).

Recall from Step I that the train track τm has an ε-nearly-straight realization
τ∗m in M with image qi(τ∗m) a 2ε-nearly-straight train track (τ∗m)i in Mi for all
i > Nε. We now show that the enlargement (τ̌m)i can be realized as a nearly-
straight enlargement (τ̌∗m)i of (τ∗m)i in Mi: we describe a procedure to add each
additional branch bβ to (τ∗m)i in Mi in a nearly-straight manner.

As in the first case, let pleated surfaces (gi, Xi) ∈ PS(Mi) realize λi. Then
(gi : Xi → Mi) realizes leaves of νm within Ctr2ε in PMi of their associated train-
paths on (τ∗m)i.

Let ∂α = xty, and let `x and `y be the asymptotic leaves of νm corresponding
to the spike α bounds. Each leaf ` of the realization of νm in M has image qi(`)
with geodesic curvature bounded by 2ε. The frontier horocycle α, then, has image
qi(α) with endpoints within Ctr2ε of the corresponding leaves of νm on Xi. Let xi

and yi denote images of the endpoints of qi(α) under the natural projections from
qi(`x) and qi(`y) to the representatives of `x and `y on Xi. Then the concatenation
of the orthogonal projection from qi(x) to xi, the arc qi(α), and the orthogonal
projection from qi(y) to yi gives a homotopy class of paths from xi to yi in Mi; let
ξ be its geodesic representative rel-endpoints (see figure 15).

qi(`y)qi(α)

qi(x)

qi(`x)
ξ̂

ξ
xi

yi

β′

qi(τ∗m)

`β

qi(β)

qi(y)

Figure 15. A small perturbation of β′ in PMi adds a branch to (τ∗m)i.



38 JEFFREY F. BROCK

Since each projection has length less than Ctr2ε and qi(α) has length less than
2ε, we have

`Mi(ξ) < (2Ctr + 2)ε.

By theorem 2.2, there is a Cinj > 1 and a δinj > 0 depending only on S so that if

ε <
δinj

2Ctr + 2
,(5.6)

then ξ is homotopic rel-endpoints in Mi into Xi to an arc ξ̂ bounding the spike
determined by the realizations of `x and `y on Xi for which

`Xi(ξ̂) < Cinj(2Ctr + 2)ε.

For each bβ that we wish to add to (τ∗m)i, the leaf `β of λi crosses two such
arcs ξ̂ and ξ̂′ determined by the original frontier horocycles α and α′ as it enters
spikes at each end. Cutting `β at its intersections with ξ̂ and ξ̂′ and taking β′ to
be the finite arc left over, if we let C′

2 = (2Ctr + CtrigCinj(2Ctr + 2)) then by a C′
2ε

perturbation of the endpoints of β′ in PMi we may attach β′ to (τ∗m)i as a new
branch (figure 15). As in the proof of lemma 4.5, if ε < ε′L/(Cinj2(Ctr + 1)e`0) any
such arc β′ has length at least `0/2. Letting

C2 = Ccurv(`0/2)CtrigC
′
2,(5.7)

if ε < εtrig/C′
2 we can make the resulting enlargement C2ε-nearly-straight in Mi.

Since this perturbation moves the endpoints of β′ within the thick part, the added
arc is homotopic to qi(bβ) rel-endpoints.

Adding the branches bβ for each β ∈ Bi we obtain a realization (τ̌∗m)i of (τ̌m)i

in Mi as an enlargement of (τ∗m)i. Thus, we have that each (τ̌∗m)i is C2ε-nearly-
straight in Mi where C2 depends only on ε0 and S, provided ε is chosen sufficiently
(uniformly) small to satisfy the above constraints, and the index Nε is chosen
accordingly.

Step III: melding enlargements of train tracks. We now bootstrap our way to
the case when µr has compact leaves and infinite leaves by melding the realizations
(τ̌∗c )i and (τ̌∗m)i in Mi that we obtained in the previous step into a single (possibly
slightly less) nearly-straight generalized enlargement of (τ∗)i. Our aim is to show
that we lose a uniformly bounded multiplicative amount of straightness in the
process.

To avoid excessive sub-scripts, let Tc and Tm be train tracks minimally carrying
νc and νm respectively that are ε-nearly-straight in Mi. For a given simple closed
curve c, assume we are given enlargements Ťc and Ťm of Tc and Tm, so that each
enlargement minimally carries c and is C3ε-nearly-straight in Mi, with C3 > 1.
Then we claim there is a Cmeld > 1 so that these train tracks may be melded into
a single CmeldC3ε-nearly-straight generalized enlargement T of Tc t Tm obtained
by adding branches to Tc tTm so that T carries c.

To see this, let c∗ be the geodesic representative of c in Mi, and lift the picture
to PMi. To represent lifting to PMi, we prepend by “P”: i.e. Pc∗ denotes the lift
of c∗ to PMi. The train tracks Tc and Tm and their enlargements and train-paths
all admit natural lifts to PMi.

Since c is carried by both Ťc and Ťm, there are train-paths rc : S1 → Ťc and
rm : S1 → Ťm homotopic to c. As Ťc and Ťm are C3ε-nearly-straight, there are
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smooth homotopies hc(x, t) and hm(x, t) to c∗, so that we have

hc(x, 0) = rc(x) and hm(x, 0) = rm(x),

so that hc(x, 1) and hm(x, 1) are each smooth parameterizations of c∗, and so that
hc and hm lift to homotopies Phc and Phm in PMi from Prc and Prm to Pc∗ so
that tracks of Phc and Phm have length at most CtrC3ε (the homotopy hc is lifted
by lifting each smooth closed curve ct0(x) = hc(x, t0) to PMi for each t0 ∈ [0, 1],
and likewise for hm)

Given a branch b of Tc, we let Ic(b) ⊂ PMi denote the union of intervals b∗

on Pc∗ for which Prc(x) ∈ Pb if and only if Phc(x, 1) ∈ b∗: i.e. Ic(b) is the set of
arcs on Pc∗ sent to Pb under the homotopy Phc. Let Im(b) be defined similarly
for each branch b of Tm.

Conceivably, branches bc ⊂ Tc and bm ⊂ Tm could determine overlapping sets
Ic(bc) and Im(bm) on Pc∗. We now use Thurston’s uniform injectivity theorem to
show the following claim: for ε sufficiently small, any pair of intervals ac ⊂ Ic(bc)
and am ⊂ Im(bm) are disjoint and separated by distance 2 along Pc∗.

Let λ ⊃ |µr| be a maximal lamination realized by (g, X). Let (Xλ)i ∈ PS(Mi)
be the unique pleated surfaces realizing λ in Mi. Then the (marked) surfaces
{(Xλ)i} converge to X in Teich(S) (see [Bon3, Thm. D]). We have chosen εns (see
lemma 4.5) so that the neighborhoods Nεns(νc) and Nεns(νm) of νc and νm on X
are embedded and disjoint, so we may enlarge Nε if necessary so that so that for all
i > Nε the neighborhoods Nεns/2(νc) and Nεns/2(νm) on (Xλ)i are embedded and
disjoint as well.

Since the realization of µr on (Xλ)i lies in (Mi)≥ε0 for all i > Nε, any pair of
points x ∈ νc and y ∈ νm as they sit on (Xλ)i lie in ((Xλ)i)≥ε0 . By Thurston’s
uniform injectivity theorem (theorem 2.1) we have that corresponding to εns/2 (and
ε0), there is a δ so that if `x ⊂ νc and `y ⊂ νm are the geodesic leaves through x
and y, the distance in the projective tangent bundle satisfies

dPMi((x, `x), (y, `y)) > δ(5.8)

for all i > Nε.
Thus, the subsets

Zc = {(z, c∗) ∈ Pc∗ | for some x ∈ νc, dPMi((z, c∗), (x, `x)) < δ/2}
and

Zm = {(z, c∗) ∈ Pc∗ | for some y ∈ νm, dPMi((z, c∗), (y, `y)) < δ/2}
where Pc∗ runs within δ/2 of Pνc and Pνm in PMi respectively, are disjoint.

Moreover, by a hyperbolic trigonometry argument, there is a constant C4 > 1
so that if δ > 0 is sufficiently small and we have

dPMi((x, `x), (z, c∗)) < δ

then for any point (z′, c∗) within distance 1 along Pc∗ of (z, c∗), there is a point x′

on `x so that
dPMi((x

′, `x), (z′, c∗)) < C4δ.

Assuming δ < 1 is sufficiently small for this relation to hold, we collect our con-
straints on ε (see inequality 5.6 and equation 5.7): let

εtt = min
{

εns,
δ

4C4C3Ctr
,

δinj

2(Ctr + 1)
,

ε′L
Cinj2(Ctr + 1)e`0

,
εtrig

C′
2C3Ctr

}
.
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Given a branch bc of Tc, let (z, c∗) be a point lying in Ic(bc). Then for ε < εtt
there is a point x on `x, a leaf of νc, so that

dPMi((z, c∗), (x, `x)) < 2CtrC3ε.

It follows that if (z′, c∗) ∈ Pc∗ is any point within distance 1 of (z, c∗) along Pc∗,
then (z′, c∗) lies within C4(2CtrC3ε) < δ/2 of (x′, `x) in PMi for some point x′ on `x.
Thus, the radius 1 neighborhood of (z, c∗) along Pc∗ lies in Zc. We conclude that
for each branch bc of Tc, the radius 1 neighborhood along Pc∗ of the collection of
arcs Ic(bc) lies in Zc; similarly, for each branch bm of Tm the radius 1 neighborhood
of Im(bm) along Pc∗ lies in Zm. Since Zc ∩ Zm = ?, the claim is proven.

If e is any arc in the complement

Pc∗ − {∪bc∈TcIc(bc)}
⋃
{∪bm∈TmIm(bm)}

then either

1. there is a branch b̌c ∈ Ťc so that e is an arc of Ic(b̌c),
2. there is a branch b̌m ∈ Ťm so that e is an arc of Im(b̌m), or
3. ∂e = zc t zm where zc lies in ∂Ic(bc) and zm lies in ∂Im(bm).

If e satisfies (1) let be = b̌c, and if e satisfies (2) let be = b̌m. If e satisfies

c∗

`y ⊂ νm

`x ⊂ νc

e
zc

vc

be

vm
Tm

Ťm

Tc

Ťczm

Figure 16. Melding train tracks.

(3), a perturbation of e moving each point at most C3Ctrε in PMi yields the lift to
PMi of a branch be with endpoints in switches vc ∈ ∂bc and vm ∈ ∂bm with which
we may enlarge Tc tTm. (See figure 16. The perturbation may be performed by
taking a smooth convex combination along e of the homotopies Phc at (zc, c

∗) and
Phm at (zm, c∗)).

For each e, then, add the branch be to Tc t Tm, collapsing any two branches
be and b′e from case (3) that are homotopic rel-endpoints into a single branch. The
result is a generalized enlargement of Tc t Tm. By construction, the generalized
enlargement T is the image of c∗ under an explicit homotopy of c∗ to a train path
č : S1 → Mi on T.

Furthermore, since each e satisfying (3) has length at least 2 > `0/2 and we
have ε < εtrig/C3Ctr, by repeating the argument of lemma 4.5 and letting

Cmeld = Ccurv(`0/2)CtrigCtr,

the branches be from case (3) may be adjusted so that the generalized enlargement
T is CmeldC3ε-nearly-straight in Mi, provided i > Nε.

The enlargements Ťc and Ťm each carry c. Given a branch b of the sub-track
Tc or Tm, let mb(c) denote the weight deposited by c on b. The weight mb(c) is
precisely the number of arcs on Pc∗ that are homotopic into Pb under the homotopy
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of Pc∗ to Pč, which is precisely the number of arcs in Ic(b) if b is a branch of Tc

or Im(b) if b is a branch of Tm. Thus we have

mb(č) = mb(c)(5.9)

for any branch b of Tc or Tm.

Conclusion. Provided ε < εtt and Nε is chosen accordingly, then, for each i > Nε,
letting C3 = max{Cns, C2}, setting

(τ∗m)i = Tm and (τ∗c )i = Tc

and setting
(τ̌∗m)i = Ťm and (τ̌∗c )i = Ťc

in the above construction, we denote by τ̌i = T the resulting generalized enlarge-
ment of (τ∗m)i t (τ∗c )i in Mi. The train track τ̌i is a CmeldC3ε-nearly-straight gener-
alized enlargement of (τ∗)i = (τ∗m)i t (τ∗c )i in Mi that carries µr and carries ci by
the train-path či.

Referring back to the remark before the proof, if (b)i is the image of the branch
b of τ in its realization (τ∗)i and generalized enlargement τ̌i in Mi, we denote by
mb(či) the weight m(b)i

(či) deposited by či on (b)i. Then by equation 5.9, we have
that the weight mb(či) satisfies

mb(tiči) → mb(µ)

for each branch b of τ . Thus, letting C = CmeldC3 proves the lemma.

Although our primary aim here is to control the lengths and positions of mea-
sured laminations, we remark that the geometric techniques above did not use the
convergence of the measured laminations tici → µ but merely convergence in the
Thurston topology of ci to sublaminations ν ⊂ |µ|.

Corollary 5.3. Let simple closed curves ci converge in the Thurston topology
to λ = |ν|, for ν ∈ R(M). Then given ε1 > 0 and L1 > 0 so that λ is realized in
M≥ε1 and each compact leaf of ν has length less than L1 in M , there is a constant
C depending only on S and ε1 so that for positive ε < εtt there exists:

1. a train track τ minimally carrying λ with an ε-nearly-straight realization τ∗

in M ,
2. an integer Nε > 0 so that for all i > Nε, τ admits a realization in Mi with

a Cε-nearly-straight generalized enlargement τ̌i so that ci is carried by τ̌i on
a train-path či for which if b is a branch of τ , we have mb(či) →∞.

6. Continuity on realizable pairs

In this section we bring the nearly-straight train tracks of the previous section
to bear on the length function.

Theorem 6.1. Length Continuous on Realizables Let (Mi, µi) ∈ R con-
verge to (M, µ) ∈ R in the product topology. Then

lim
i→∞

lengthMi
(µi) = lengthM (µ).
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Proof: Let µ lie inR(M). Since weighted isotopy classes of simple closed curves are
dense inML(S), it suffices to show that if the weighted isotopy classes tici ∈ R(Mi)
converge to µ then the sequence {lengthMi

(tici)}∞i=1 converges to lengthM (µ) and
apply a diagonal argument.

Upper semi-continuity: Let g : X → M be a pleated surface realizing a maximal
lamination λ containing µ. Then for i sufficiently large, λ is realizable in Mi with
unique realizing pleated surface (Xλ)i ∈ PS(Mi). The hyperbolic structures (Xλ)i

converge to X in Teich(S) (again, by Bonahon’s theorem [Bon3, Thm. D]).
By continuity of length: Teich(S)×ML(S) → R, it follows that

lim
i→∞

length(Xλ)i
(tici) = lengthX(µ) = lengthM (µ)

so, since length(Xλ)i
(tici) bounds lengthMi

(tici) for all i, we have

lim sup
i→∞

lengthMi
(tici) ≤ lengthM (µ).(6.10)

This proves upper semi-continuity.
We make the additional observation that since lengthMi

(µ) = length(Xλ)i
(µ)

for all i, we have

lim
i→∞

lengthMi
(µ) = lengthM (µ)(6.11)

for later reference.

Lower semi-continuity: Assume µ is positive (otherwise there is nothing to
prove). Fix ε > 0 sufficiently small to satisfy the hypotheses of lemma 5.2, and let
Nε be the corresponding integer so that for i > Nε we have

1. a train track τ minimally carrying µ with an ε-nearly-straight realization τ∗

in M
2. Cε-nearly-straight generalized enlargements τ̌i of realizations τi of τ in Mi

and train-paths či : S1 → τ̌i carrying ci so that for each branch b of τ , we
have mb(tiči) → mb(µ).

Since mb(tiči) converges to mb(µ) for each branch b of τ , there is a sequence
δi > 1, tending to 1, so that we have

δimb(µ) ≥ mb(tiči) ≥ 1
δi

mb(µ).(6.12)

Since τ̌i is Cε-nearly-straight in Mi, we have

lengthMi
(tici) ≥ 1

K(Cε)
`τ̌i(tiči).(6.13)

By equation 6.12 we have the inequality

`τ̌i(tiči) ≥ 1
δi

`τi(µ).

Hence for all i > Nε, we have

lengthMi
(tici) ≥ 1

K(Cε)δi
`τi(µ) ≥ 1

K(Cε)δi
lengthMi

(µ).

Since lengthMi
(µ) → lengthM (µ) (6.11), it follows that

lim inf
i→∞

lengthMi
(tici) ≥ 1

K(Cε)
lengthM (µ).
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Letting ε approach 0, K(Cε) tends to 1, so we may conclude the lower-semi-
continuity

lim inf
i→∞

lengthMi
(tici) ≥ lengthM (µ).(6.14)

The theorem follows.

Corollary 6.2. Let Mi → M in AH(S) and let µ ∈ R(M). Then for i
sufficiently large there are realizations τi in Mi of (finer and finer) train tracks
minimally carrying µ so that

lim
i→∞

`τi(µ) = lengthM (µ).

Proof: This follows easily from a diagonal argument using the observation that by
analogy with inequality 6.13, τi satisfies the double inequality

`τi(µ) ≥ lengthMi
(µ) ≥ 1

K(Cε)
`τi(µ).(6.15)

7. Extending to non-realizable pairs

Given a pair (M, µ) ∈ AH(S)×ML(S), the function

(M, µ) → lengthM (RM (µ))

is a natural extension of length: R → R to all of AH(S) × ML(S). When µ
is connected and non-realizable, it agrees with the function length

M
(µ) given by

taking lim inf of the infima of lengthM (ν) over realizable laminations ν ∈ R(M) in
smaller and smaller neighborhoods of µ (see [Th1, Ch. 9] [Th4, §3], [Bon1, Lem.
5.1]). In this section we show the these functions are the same continuous function.

Theorem 7.1. Length Extends Continuously The function

length: AH(S)×ML(S) → R

is continuous.

By lemma 5.2, the lower-semi-continuity argument of theorem 6.1 applies with
RM (µ) = µr in place of µ to establish the following analog of equation 6.14 from
its proof.

Lemma 7.2. Let {(Mi, tici)} ⊂ R converge to (M, µ) ∈ AH(S) × ML(S).
Then

lim inf
i→∞

lengthMi
(tici) ≥ lengthM (µr).
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Proof: (of theorem 7.1). Let {(Mi, tici)} ⊂ R converge to (M, µ) ∈ AH(S) ×
ML(S) as above. Let µ admit the decomposition µ = µr∪µnr, where µr = RM (µ),
and µnr = µ− RM (µ) is the maximal non-realizable sublamination of µ in M .

Shortening non-realizables. By the shortening process of [Bon1, Lem. 5.1],
there is a sequence of train tracks τnr

n in M , so that
1. each τnr

n minimally carries µnr, and
2. we have the limit

lim
n→∞ `τnr

n
(µnr) = 0.

Straightening realizables. Using corollary 6.2 of lemma 5.2, we construct a
sequence of train tracks τ r

n in M so that
1. each τ r

n minimally carries µr, and
2. we have the limit

lim
n→∞ `τ r

n
(µr) = lengthM (µr).

We let τn be the train track
τn = τ r

n ∪ τnr
n

in M , and note that
lim

n→∞ `τn(µ) = lengthM (µr).

Pass to a subsequence of {ci} that converges in the Hausdorff topology. Then
there is a sequence of enlargements of τn to a train track τ ′n in M such that τ ′n
carries ci for all i > Nn.

The track-length `τ ′
n
(tici) satisfies

lengthM (tici) ≤ `τ ′
n

(tici)

for each i > Nn. Since for any branch b of τ ′n − τn the masses {mtici(b)} tend to 0
as i tends to ∞, it follows that

lim
i→∞

lengthM (tici) ≤ `τn(µ)

for each n.

Algebraic convergence. For each n, the train track τ ′n is contained in a compact
set Kn ⊂ M . Let real numbers Ln > 1 tend to 1. For each n, let N ′

n > Nn

be a positive integer such that there are smooth, marking-preserving homotopy
equivalences

qi : M → Mi

so that ‖qi‖C1 < Ln on Kn for all i > N ′
n. Then we have

`qi(τ ′
n)(tici) ≤ Ln`τ ′

n
(tici)

for all i > N ′
n. Diagonalizing, we have

lim sup
i→∞

lengthMi
(tici) ≤ lengthM (µr),

and thus by lemma 7.2

lim
i→∞

lengthMi
(tici) = lengthM (µr).

It follows from an additional diagonal argument that the function lengthM (µ)
on R extends continuously to the function

(M, µ) → lengthM (RM (µ))
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on R = AH(S)×ML(S) which is therefore equal to length on AH(S)×ML(S).

The following corollary is an immediate consequence:

Corollary 7.3. Zero-Locus Let (Mi, µi) → (M, µ) in AH(S)×ML(S) so
that the sequence {

length
Mi

(µi)
}∞

i=1

converges to 0. Then RM (µ) = 0.
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