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Abstract Let ¢ € Mod(S) be an element of the mapping class group of a sur-
face S. We classify algebraic and geometric limits of sequen@@6,° X, Y)}>,

of quasi-Fuchsian hyperbolic 3-manifolds ranging in a Bers slice. Whhbas in-

finite order with finite-order restrictions, there is an essential subsurface S

so that the geometric limits have homeomorphism tgpe R — D, x {0}. Typ-

ically, ¢ has pseudo-Anosov restrictions, ah, has components with negative
Euler characteristic; these components correspond to new asymptotically periodic
simply degenerate ends of the geometric limit. We show theredsan depending

on ¢ and bounded in terms of so that{Q(¢*' X, Y}, converges algebraically

and geometrically, and we give explicit quasi-isometric models for the limits.
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1 Introduction

The goal of developing a complete understanding of hyperbolic structures on 3-
manifolds has given rise to a powerful deformation theory. This deformation theory
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has an algebraic nature, as it parametrizes hyperbolic 3-manifolds with a given fun-
damental group.

The deformation theory is geometrically quite coarse: important geometric in-
formation can be lost in the passage to limits. Indeed, consider two familiar limiting
processes: given an essential simple closed cuorethe boundary of a hyperbolic
3-manifold M, pinchingd and Dehn twisting about describe two routes to the
samealgebraic limit manifoldM/, on the boundary of the deformation space. But
while the pinched manifolds geometrically resemblg, late in their approach, the
geometry of the twisted manifolds converges to that of a hyperbolic 3-mariifold
not even homeomorphic td/.,. To recover this geometric information one con-
siders thegeometric limitsthese approaches produce, giving rise to the study of
algebraic and geometric limitsf hyperbolic 3-manifolds.

One might envision a classification of algebraic and geometric limits. In this
paper, we take an initial step in this direction by considering algebraic and geometric
limits that arise from a minimal amount of data: a pair of homeomorphic finite-area
hyperbolic Riemann surfaces andY and amapping classp. To state our results
we review the basic setting.

Let .S be an oriented surface of negative Euler characteristic (asSusmeosed
for simplicity). Let Teici(.S) denote itsTeichnilller spacewith its automorphism
group Mod S), themapping class groug_et I'(X,Y) denote the quasi-Fuchsian
Bers simultaneous uniformizatiafi (X, Y) € Teich(S) x Teich(S); thenI'(X,Y)
determine)(X,Y) = H?/I'(X,Y) as its quotient hyperbolic 3-manifold.

The quasi-Fuchsian manifoldgF'(.S) lie in the subspace H (S) of therepre-
sentation variety(m1(S)) = Hom(w(S), PSLy(C))/conj consisting of of faith-
ful representations with discrete (Kleinian) image(£;(S) carries thealgebraic
topology. Each conjugacy clagg] € AH(.S) determines a hyperbolic 3-manifold
M =B /p(mi(5)).

One obtains &Bers sliceBy = {Q(X,Y) | X € Teich(S)} in QF(S) by
fixing Y in the second factorBy is a precompact copy of Teichutér space in
AH(S). Its closureBy gives aBers compactificatiomf Teichnuller space, and a
resultingBers boundary) By . A mapping class € Mod(.S) naturally determines a
sequence in a Bers slice viaitsration {Q(¢' X, Y)}22, C By on X € Teich(S).

Geometric convergenaefers to convergence in thiéausdorff topologyof the
images{p;(m1(S))} = I; after conjugating sp; — p:i.e.{I;} converges td" if
1. For anyy € I" there arey; € I; so thaty; — ~, and
2. if elementsy;; € I';; converge, then their limit lies if'.

ThenN = H? /I is thegeometric limit Any convergent sequence iH (S) has a
geometric limit after passing to a subsequence. Our main result is (theorem 7.3):

Theorem 1 HOMEOMORPHISM TYPES. There is an essential subsurfatg, C S
naturally associated te so that any geometric limiV of {Q(¢' X, Y")}32, has the
homeomorphism type

N=SxR-D, x {0}

if D, # SandN = S x R otherwise.
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The subsurfaceD, C S records the locus of the infinite order dynamicsyof
the complementS — D, is the maximal subsurface on whighrestricts to a fi-
nite order mapping class (see definition 2.10). The limit representatias image
p(m1(S)) < I, so the algebraic limiQ., = H?/p(71(S)) coversN by a local
isometry.

One may ask whether the passage to subsequences is necessary. In particular,
the question oftonvergencef iteration of mapping classes on a Bers slice was
originally posed by L. Bers and answered by J. Cannon and W. Thurston the case
wheny is pseudo-Anosov, i.e. no power @fstabilizes any non-peripheral essential
simple closed curve up to isotopy.

As each algebraic accumulation pofpt, € By and each geometric accumula-
tion point NV are hyperbolic 3-manifolds, one approach to convergence is to compare
accumulation points geometrically. We go on to answer Bers question in general by
giving explicit models for the algebraic and geometric limits of iteration. Much of
the work lies in the following:

Theorem 2 QUASI-ISOMETRY TYPES Let{Q(¢'X,Y)}22, have geometric limit
N. Then the quasi-isometry type dfdepends only on the mapping class

A more precise formulation appears in proposition 7.1 and theoren§7).2 (

Iteration of finite-order mapping classes does not converge; one must first pass
to a finite power to obtain a convergent sequence. In general, there is an integer
so that passing to a power that isstable(each finite order restriction @f* is the
identity) ensures convergence. In other words, we have (theorem 6.1):

Theorem 3 ITERATION CONVERGES Lety € Mod(S) be a mapping class. Then
there is ans > 1 depending orp and bounded in terms &f so that the sequence
{Q(¢*X,Y)}s2, converges algebraically and geometrically.

How ¢ determines the quasi-isometry typegfis revealed over the course of
the paper. We illustrate the process in key examples, given below.

Examples

In analyzing any sequende&)(X;,Y)}5°, in a Bers compactificatiol, natu-
ral questions arise. What happens to the surfaGeis the limit? Which elements
have become parabolic? Which ends of the algebraic limit are geometrically finite,
and which degenerate? What is the geometric limit? Here are the answers for three
basic examples of mapping class iteration.

I. v» € Mod(S) is pseudo-AnosovA mapping class) € Mod(S) is pseudo-
Anosovif no power ofi) preserves the isotopy class of any essential simple closed
curve onS. For this case, the surfacééX degenerate, leavingtatally degener-
atelimit @y, (i.e. 90Q, = Y) with no new parabolic elements. The algebraic and
geometric limits of@ (¢ X, Y) agreegiving an example o$trong convergence

By contrast, the following iterations dwt converge strongly.

Il. 9 € Mod(S) is a Dehn twist.Under iteration of &Dehn twistJ abouto (fig-
ure 1) the algebraic and geometric limits@f#’ X, Y') differ. In the algebraic limit,
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Figure 1. Examples of mapping classes.

the surface®’ X have split into two quasi-Fuchsian punctured tori corresponding
to L and R. The induced representatiops converge (up to conjugacy) anto

a parabolic element, while the cyclic groupg;(4)) converge geometrically to a
rank-2 parabolic group (isomorphic td & Z), indicating the presence of a new
torus-endE = T2 x [0, c0) in the geometric limitN'; N has homeomorphism type

N =S xR-§x{0}.
Our investigation is motivated by the following example.

. ¢ € Mod(S) is partially pseudo-AnosovLet ¢ = ¥, o 93, the product of
Dehn twists aboutr; and/3; (figure 1). The induced mapping clask: € Mod(R)
is pseudo-Anosovp is called thehalf-pseudo-Anosawapping class.

In the algebraic limit),,, the Riemann surfaces X partially degeneratealong
the subsurfacé?: the curvesd is parabolic and),, — {cuspg has a quasi-Fuchsian
endL x R" as well as alegenerate en® x R .

The geometric limitV has the homeomorphism type

N =S xR - R x{0}.

Now thesubsurfaceR recedes to infinity, leaving new degenerate eAgsand E,
of N — {cuspg in its wake; each is asymptotically periodic by (see figure 2).

Figure 2. The algebraic and geometric limits of {Q (X, Y)}52,.
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Ouitline of the proof

We outline the proof that iteration of the half-pseudo-Anosov clagsxample
I, above) converges and describe the quasi-isometry type of its geometric limit.

Step 1) Quasi-isometry invariants.Thurston’s theory of pleated surfaces reveals
that in any algebraic accumulation poiQt, of {Q(¢'X,Y)}°, in OBy, § has
become parabolic, an@, — {cuspg has developed a simply degenerate &pd=

R x RT. The endE; has the property that for any essential simple closed curve
v C R, the curvesy'(y) C R determine closed geodesig§(v)* in Q, that leave
every compact subset ¢f,..

Step 2) Asymptotic geometryActually, the endtr is asymptotically periodicE'r
is quasi-isometric to one end of the periodiecover)M,,-.,, of the mapping torus

T,-1), = R x I/(x,0) ~ (¢ "|r(z),1)

with quasi-isometry constant tending to 1 out the end.

It follows that the quasi-isometric geometry éfz depends only on the iso-
topy classp|g. Since any two algebraic accumulation poi@ts andQ;, have their
topology, parabolic locus, and corresponding ends all determingdupyto quasi-
isometry, the quasi-isometry type of any algebraic limit depends only. dience,
any two algebraic accumulation poir@s, andQ;, admit a quasi-isometry compat-
ible with markings.

Step 3) The geometric limit.By are-marking trick any geometric limitV is also
the geometric limit of a subsequenceof' (Q(¢'X,Y)) = Q(X, ¢ 'Y): the same
sequence of manifoldse-markedby . Thus, N is also covered the algebraic
limit Q- of this re-marked sequence, which has a similar but inverted structure.
By a gluing lemma(lemma 6.5) the cover®, and(@,-1 are compatible with
gluing datar: an orientation-reversing involution of tligiasi-Fuchsian boundary
04t (Qy U Q1) (the subset of the conformal boundary@f L -1 whose cor-
responding covers are quasi-Fuchsian). The lirgits and Q-1 may be glued
(by Klein-Maskit combination) along quasi-Fuchsian ends correspondirdgtto
form a complete hyperbolic manifol@, L Q,-1)/7 that also coversV by a lo-
cal isometry. The covering extends to an embedding on the conformal boundary
9 ((QyUQ,1)/T) = X LY into dN, so the cover is an isometry. Because the
gluing 7 identifies the quasi-Fuchsian end<pf and@,,-1 corresponding td,, the
geometric limitNV has homeomorphism typ€ = S x R— R x {0} (cf. theorem 1).

Step 4) Geometric convergenceAny two geometric accumulation poinf$ and
N’ are realized as gluing€), UQ,-1)/T and(Q;, U Q:O,l)/r of pairs of algebraic
accumulation points. Thus, Step 2) implies there is a quasi-isoréetryy — N’
whose lifts toQ, and@,,-: are compatible with markings. Siné&V = X 1Y =
ON’, © is homotopic to an isometry, so the sequence converges geometrically.

Step 5) Algebraic convergenceThe isometry lifts to a marking-preserving isom-
etry¢: Q, — Q.,, so the sequence converges algebraically.
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Remarks on the general cagexamples |, Il, and Il present the prototypes for
iteration of general mapping classesBn; the arguments fit together to handle the
general case, after passing to an iterate wfose finite order behavior stabilizes.

Though our proof makes use of Thurston’s construction of a hyperbolic structure
onT,,, a quasi-isometrically correct model for the eAdarising in@, can be
givencombinatoriallyby gluing a half-infinite collection of copies @t x I together
end-to-end byp|r (the analogous construction applies2g-1). Hence, a concrete
quasi-isometric model for the gluin@, LI Q,-1)/7, and hence for the geometric
limit, may be constructed directly. We discuss this in section 7.

Limit Sets

The action of the Kleinian covering group for Q(¢*X,Y) partitions@ into its
limit setA;, where it acts chaotically, and its domain of discontinuity= C— A;.
While A; converges in the Hausdorff topology to the limit gkt of the geometric
limit I'g of I3, the limit setA4 of the algebraic limit is strictly smaller thang
when the convergence is not strong. That the compaf?entc (@ — A 4) covering
Y C 0Q, embedsn ¢ = C — Ag will be an important tool in our proof.
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Figure 3. Limit sets for algebraic and geometric limits for example 1.

In figures 3 and 4 we have rendetele limit sets of the algebraic and geometric
limits in examples Il and 11l for certaitX’ andY’. In figure 3,{2y contains the point
at infinity and embeds it — Ag. In figure 4,2y is the central component with
non-circle boundary; it embeds into a portion of the upper hemisph@a’n/lg
after a PSL(C) change of coordinates.

History and References

The question of convergence of iteration was originally raised in [Bers3] wherein
L. Bers proves that any accumulation point of pseudo-Anosov iteration is totally
degenerate and free of accidental parabolics.

1 We employ computer programs of Curt McMullen.
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Figure 4. Limit sets for algebraic and geometric limits for example II.

Algebraic and geometric convergence for the pseudo-Anosov case were later
proven in [CT,§7]; a detailed proof has appeared more recently in [M&2, An
expository account of examples Il and Il appears in [Brl]. The geometric limits
in examples | and Il are employed: () in Thurston’s geometrization of 3-manifolds
fibering over the circle [Th4] [Otall] [Mc2], and (II) in the proof of non-continuity
of the action of the modular group @By [KT]. Our study completes the general
picture of algebraic and geometric limits that arise under iteration efMod(S)
on a Bers slice.

We remark that the homeomorphism (and thence quasi-isometry) type of the
geometric limit of half-pseudo-Anosov iteration differs from other examples of non-
strong convergence presented in [K3], [Th4,§7], and [BO] in which all new ends
of the geometric limit are rank-2 cusps.

Plan of the paper: Section 2 presents necessary background, and section 3 intro-
duces results from pleated surface theory. Section 4 builds up a complete picture of
the quasi-isometry invariants of any algebraic accumulation ggjntSection 5 ap-
plies Thurston’s construction of hyperbolic structures on 3-manifolds fibering over
the circle to prove that the ends arising from induced pseudo-Anosov dynamics of
p are asymptotically periodic; this determines the quasi-isometry typk, of

In Section 6 we prove convergence of iteration, giving a direct construction of
the geometric limit by gluing together algebraic limits. Finally, section 7 describes
quasi-isometric models for algebraic and geometric limits implicit in section 6. We
show how these models can be constructed concretely gravithout reference to
specific hyperbolic structures, thereby elucidating how the homeomorphism type
changes in the geometric limit.

Acknowledgments. This paper presents results of my doctoral dissertation [Br3]
completed at U.C. Berkeley. | would like to thank my advisor, Curt McMullen, for
his suggestions and guidance, and the referees for many useful comments.
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2 Preliminaries

Surfaces.Let S be a compact connected oriented topological surface of negative
Euler characteristic. Whefi has non-empty boundary, denote by Bt its interior
S —08S.

The Teichnilller spaceTeich(.S) of S parametrizes finite area hyperbolic struc-
tures onS up to isotopy: finite area hyperbolic surfac&s each equipped with
an orientation-preserving homeomorphism,nuarking f: int(S) — X with the
equivalence

(f, X) ~(9,Y)
when there is an orientation-preserving isometryX — Y such thatp o f is
homotopic tog.

An elements € 71(S) is peripheralif it is freely homotopic to a component
of 9S. Any element(f, X) € Teich(S) determines a discrete faithful representa-
tion f.: m(S) — PSL(R) = Isom"(H?) up to conjugacy, such that. sends
peripheral elements of; (S) to parabolic elements of IsontH?).

A subsurfaceR? C S of a compact oriented surfaéas a compact 2-dimensional
submanifold ofS. An essential subsurfads a subsurfacé C S whose boundary
is homotopically essential. WheR = R; U Ry is a disjoint union of compact
oriented surfaces, each with negative Euler characteristic, we defing( Rgich
Teich(R;) x Teich(Rz). We will often refer to surfaceX € Teich(S) suppressing
the implicit marking.

Kleinian groups and hyperbolic 3-manifolds. A Kleinian groupI” is a discrete
subgroup of IsomH? = PSLy(C). Naturally associated to any Kleinian groiip
are itslimit set A where any orbitl'(x), € H?, accumulates oft, its domain
of discontinuityf? = C — A where the action of is properly discontinuous, and
the convex hullch(A) of A, the smallest hyperbolically convex subsefif whose
closure inH3 U C contains the limit set. When necessary, we will use the notation
('), A(I') to denote the domain of discontinuity and limit set/af

When I is torsion-free, the quotient/ = H?/I" is a complete hyperbolic 3-
manifold. By adjoining the domain of discontinuity ¥ and passing to the quo-
tient, we extendV/ to its Kleinian manifold

M= ue)/r
with its conformal boundaryM = §2/I". The quotient cbA)/I" = corg M) is
the minimal convex subset dff called itsconvex corelf a metrice-neighborhood

N.(corg M)) of the convex core of\/ has finite volume, thed/ and its Kleinian
uniformizationl” aregeometrically finiteOtherwise, they argeometrically infinite

Surface groups.Let H(S) be the set of all complete hyperbolic 3-manifoltis
equipped with homotopy equivalenc¢s S — M such thatf. sends peripheral
elements to parabolics, with the equivalerige: S — Mj) ~ (fe2: S — My)
when there is an orientation-preserving isometryM; — M- such thatp o f; is
homotopic tofs.
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A choice ofbaseframev € M determines a Kleinian group by the require-
ment that the standard frarieat the origin inH? lie overw in the covering projec-
tion

(B, &) — (B,8)/T = (M,w).

The homotopy equivalencg: S — (M,w) from S to thebasedhyperbolic man-
ifold (M,w) determines a representatigh: m1(S) — PSL(C). The image is
discrete, and, is faithful.

EquippingM € H(S) with the additional data of a baseframe, we obtain the
setH,,(S) of marked based hyperbolic manifoldg: S — (M, w)) by requiringe
to preserve baseframes. Giviig, (S) the compact-open topology on the represen-
tations f, (the natural topology oW (7 (S))), we obtain the spacd H,(S) . We
give H(S) the quotient topology from the natural m#f,(S) — H(S) obtained
by forgetting the baseframe and call the resulting spbbg.S).

As with Teichmiller space, a hyperbolic manifoltf € AH(S) and any lift
(M,w) of M to AH,,(S) are implicitly marked.

Quasi-isometries.Let M and N be Riemanniam-manifolds. A diffeomorphism
h: M — N is called anL-quasi-isometryif there is a real numbek > 1 such that
given any non-zero tangent vectoe T M,

1 _ |Dh()

L= |l
A quasi-isometryh: M — N has aquasi-isometry constankt(h) which is the
infimum over allL such that: is an L-quasi-isometry.

The quasi-isometric distancé(.,.) on H(S) x H(S) is defined as follows: if
My=(f: S— M)andNy = (g: S — N) in H(S) then we define

< L.

d(My, Ng) = inf  log L(h).
(Mo, No) = 1, | 1ofe gy 0B L)
If there is no orientation-preserving in the appropriate homotopy class, define
d(My, Nog) = oo. Let QH(S) denoteH (S) with the quasi-isometric topologin-
duced byd(.,.). Compactness theorems for quasi-conformal mappings [LV] [Gard,
§1.8, Lem. 6] guarantee thdf., .) is lower semi-continuous [Mc2, Prop. 3.1].

Algebraic and geometric convergencelLet X be a separable metric space. Let
CI(X) denote its set of closed subsets.

Definition 2.1 In theHausdorff topologyon CI(X ), a sequencgY; } tends toZ if

1. Foreveryz € Z, there arey; € Y; such thatim; ... y; = =.
2. For any subsequendej, and elementg,-j €Y, if Yi; — 2 thenz € Z.

The set C1X) is compact in the Hausdorff topology (see [H)2-16]). Giving the
discrete subgroups of P$(C) the Hausdorff topology as closed subsets we obtain
thegeometric topologyn Kleinian groups.

2 QOur terminology, somewhat non-standard since the advent of coarse geometry, follows [Mc2)].
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Thegeometric topologpn based hyperbolic 3-manifoldd/, w) is the geomet-
ric topology on their Kleinian covering grougs. Let H? be the set of all based
hyperbolic 3-manifoldg M, w). In intrinsic terms, a sequence of based hyperbolic
manifolds{(};,w;)} converges to a based hyperbolic manifoMd, w) in the geo-
metric topology if and only if for any compact submanifdld C N containingw,
there are quasi-isometrids: K — M, such thati(w) = w; and so thak; tends to
an isometry in the”>° topology (see [BP, Thm. E.1.13]).

Given a convergent sequendé;, — M in AH(S), convergent lifts(M;, w;)
to AH,(S) determine convergent representatigns— p. If the Kleinian groups
pi(m1(S)) converge geometrically td, it follows from definition 2.1 (part 2) that
p(m1(S)) < I', soM naturally coversV = H? /I". We shall see thai(; (S)) can
often be a proper subgroup 6f[KT, §3][Th1, §9.1].

We now illustrate a baseframe independent notion of geometric convergence of
markedhyperbolic manifolds i H (.S).

Definition 2.2 Let marked hyperbolic 3-manifolds\/,,} ¢ AH(S) converge al-
gebraically toM., in AH(S). Then{M,,} converges geometricallyp a limit N

if there are convergent lift§(M,,,w,,)} to AH,(S) so that the sequence of based
hyperbolic 3-manifold$M,,, w,) converges geometrically {@V, w).

While the baseframes are necessary to define this notion of geometric conver-
gence, the geometric limi¥V does not depend on the choices of baseframes.

Proposition 2.3 ALGEBRAIC COVERS GEOMETRIC. The marked manifold37,
converge geometrically to a unique geometric limvitafter passing to a subse-
qguence. The limifV is covered by\/., by a local isometry.

Proof.Let (M,,,w,) — (M, ws) be convergent lifts of\f,, to AH,(S). Conver-
gence of( My, w,) implies thatw,, lies in M, gy for 0 < r < R < oco. By com-
pactness, we may extract a geometric lifit, w) covered byl after passing to
a subsequence [Mc2, Prop. 2.4]. Conjugadigse PSLy(C) between representa-
tions induced by any two convergent sequences of liftal ,,(S) converge to a
conjugacy of algebraic and geometric limits,8ds unique. O

Definition 2.4 A sequencéM,,} C AH(S) convergestronglyto a limit M if it
converges both algebraically and geometricallyM,.

We will see many examples of sequences thatak@onverge strongly.

Quasi-Fuchsian groups and manifoldsA quasi-FuchsiargroupI” is a Kleinian
group that preserves a directed Jordan cuné.ihe quotient2(I") /I is a pair
of Riemann surfaceX andY. Endowed with an isomorphisp: 71 (S) — I, the
I'-equivariant conformal structures on the two componéngsand 2y of 2(I")
determine a pair of points in Tei¢H) x Teich(S) (S is S with its orientation re-
versed), and the conjugacy clgpgsdetermines an element @fH (S).

Conversely, in [Bers1] Bers exhibited a homeomorphism

Q: Teich(S) x Teich(S) — QF(S) c AH(S)
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from the product of Teichmiler spaces to the quasi-Fuchsian representations via
simultaneous uniformizationf a pair(X,Y’) € Teich(S) x Teich(S). The surfaces
X =0.Q(X,Y)andY = 0.Q(X,Y) make updQ(X,Y).

The convex core boundag(corg Q(X,Y))) inherits the structure of a pair of
hyperbolic surfaces from its path metric (see [EM, Thm. 1.12.1]). Each component
is isotopic outside of the convex core to one of the conformal boundary components,
which we say it “faces.” Led, (Q(X,Y)) andd,(Q(X,Y)) be the components of
the convex core boundary facidg andY respectively.

Bers’ boundary. Bers proved that the slicBy = {Q(X,Y) | X € Teich(S)} of
QF(S)is an embedded copy of Teiclutfér space with compact closure 4 (S).

The Bers sliceBy C QF(S) and the resulting@ers boundarypBy C AH(S)

lie central to many issues in the deformation theory of hyperbolic 3-manifolds. In
[Bers2], Bers classifies elemerits: S — M) in 0By

1. If f.(v) is parabolic for some non-peripheral elemenk 71(S), thenM is a
cuspand-~ is anaccidental parabolic

2. If the conformal boundarg M is connected, theAM = Y, and M is totally
degenerateThe imagef, (71 (.5)) is atotally degenerate group

I fOM=YUX,U...uX,and0 < Y7 _, aredX,,) < areqY’), thenM is
partially degenerateand f, (m1(5)) is apartially degenerate group

Only cases (2) and (3) are mutually exclusive.

Geodesic and measured laminationsA geodesic laminatior\ on a finite area
hyperbolic surfac& € Teich(S) is a closed subset df given as a disjoint union of
simple, complete geodesics calledvesof the lamination (see [Th1, pp. 8.25] [CB,
pp. 39]). We give the geodesic laminatiogig X ) the pleating topologyin which
laminations{\; } converge to a laminatioi if any [ in X is the limit of /; € \; (cf.
theThurston topologpf [CEG, Def. 4.1.10]). Canonical homeomorphisms between
any pair of hyperbolic surface¥ andY in Teich(.S) induce homeomorphisms of
gl(X) andgl(Y"). This gives a universaeodesic lamination spa¢gL(.S); a point

A € GL(S) determines a geodesic lamination on @y Teich(.S).

Let S be the set of all isotopy classes of essential non-peripheral simple closed
curves onS. As any elementy € § has a unique geodesic representative on any
hyperbolic surface, there is a natural inclusbr- GL(S). Theintersection num-
beri: § x 8§ — Z>( counts the minimal number of transverse intersection points of
representatives dfy,d) € $ x 8 in their respective isotopy classes.

Let.: Ry x 8 — RS be the embedding.(ty)), = ti(a,v). Then themea-
sured laminationsM L(.S) on S are obtained by taking the closure of the image
ML(S) = 1(Ry x §8). Each measured laminatipndetermines &ransversely mea-
sured geodesic laminatiothe underlying geodesic laminatidu| is called thesup-
port of 1 (see [Bon2§1] [FLP] [EM, 3.5.1]).

The modular group. For our discussion of the Modular group, Btbe a compact
oriented, bupossibly disconnecteslirface, each component of which has negative
Euler characteristic. Thenodular groupMod(R) is the group of isotopy classes
of orientation-preserving self-homeomorphismd®fcalledmapping classeshe
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group Mod R) acts onS(R), the isotopy classes of hon-peripheral essential simple
closed curves oi. Thurston extended this actiontd L(R) = ML(R;) X ... %
ML(R,) whereR = Ry U ... U R, to give a classification of mapping classes
[Th3], which we now discuss.

A partition of R is a family IT c S(R) of distinct isotopy classes of disjoint
curves. A mapping clasg is said to bereducedby IT if o(IT) = II. If the only
invariant partition forp is the trivial partitiony is irreducible Thurston proved that
an irreducible mapping class either has finite order, or has the following type:

Definition 2.5 A mapping clasg) € Mod(R) is pseudo-Anosoif there exist mea-
sured laminationg:® and u* in M L(R) (thestableandunstabldaminations for)
and a real number > 1 so thaty(u*) = 24 andy(u®) = cp.

We now discuss theeduciblecase.

A partition IT of S naturally determines a complementary essential subsurface
S up to isotopy each component of which has negative Euler charactefigtic;
is determined by choosing disjoint oriented open annular neighborh®@ds) of
disjoint curves representing and forming the complemett; = S — N'(I1).

An invariant partitionII for ¢ € Mod(S) induces a mapping class;; €
Mod(Sr) by restriction. WherI decomposes into disjoint subsurfaceg andG
invariant byy, denote byp|r € Mod(F) ande|c € Mod(G) the mapping classes
naturally induced by restriction. The subsurfaces and induced mapping classes are
well defined as isotopy classes. In this language, Thurston’s classification takes the

following form [Th3, Thm. 4] [FLP, Exp. 9] [BLM, Thm. C].

Theorem 2.6 (Thurston)Any mapping clasg € Mod(S) determines a partition
IT and essential subsurfacés and Sp of S so that the triplg( 17, Sg, Sp) is unique
and p-invariant up to isotopy, and so that:

1. Sp; decomposes aS; = Sk U Sp,
2. ¢ = ¢l has finite order andop = ¢|s, is pseudo-Anosov, and
3. II is minimal among all partitions satisfying (1) and (2).

The triple (11, Sg, Sp), called theNielsen-Thurstordecomposition ofS for ¢, is
well defined up to isotopy (the uniquenessibfis proven in [BLM, Thm. C]). Its
finite-order partyr acts on itsfinite-order subsurfaceg and itspseudo-Anosov
part pp acts on itgpseudo-Anosov subsurfade. Theminimal reducing partition
IT is empty if and only ify is irreducible. When necessary, we uséy), Sr(y)
andSp(y) to denote dependence on the mapping class

We will be interested in the following simplifying property for mapping classes.

Definition 2.7 A mapping clasg € Mod(.S) is stableif its finite order partyr is
the identity element dflod(Sr(y)).

Sincepr has finite orderp € Mod(S) has a power that is stable.

Definition 2.8 Thestable powefor ¢ is the least integes € Z™ such thaty® is
stable. Cally® thefirst stable iteratef .

8 Cf. the similar notion of guremapping class of [lv, pp. 3].
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By Hurwitz’ theorem (see [Gr, Thm. 1.7.13)is uniformly bounded in terms .

Letd lie in I1(y). We says is anisolated Dehn twisting curvier ¢ if there is an
essential subsurfacgs C S for which § is non-peripheral irbs, any stable iterate
©° preservesSs up to isotopy, ang*|s, represents a power of a Dehn-twist about
4 in Mod(Ss). Then the following corollary may be readily verified.

Corollary 2.9 If § lies in II(p), then either§ is peripheral inSp(p) or § is an
isolated Dehn twisting curve fas. O

The Nielsen-Thurston decomposition foencodes the locus of its infinite order
dynamics:

Definition 2.10 Lety be an element dflod(S). Thedynamic subsurfac®, C S
is the complemert — Sg () of the finite order subsurface far.

Note that the subsurfade,, is essential and contains annular components when
has isolated Dehn twisting curves.

Actions of mapping classes on deformation spaceshe modular group Mod>)

acts on TeichS) and AH (S) by precomposing the marking lpy . The action on
AH(S) restricts toQF(S) = Teich(S) x Teich(S) by acting simultaneously on
each factor. Our primary concern will be with the action of the modular group on
Bers’ slice By obtained by lettingy act on the first factor.

Structure theory of hyperbolic 3-manifolds. By a theorem of P. Scott, any 3-
manifold M with finitely generated fundamental group containsoanpact core
M C M: acompact submanifoldt of M whose inclusion is a homotopy equiva-
lence [Scott]. A theorem of McCullough [McC, Thm. 2] gives a relative version.

Let M, py denote the subset dff where the injectivity radius injM — Rt
lies in (r, R). For e less than a universal each componenI’ of the Margulis
e-thin part M, ) has a standard forn¥' is either aMargulis tube a solid torus
neighborhood of a short geodesic, arwsp the quotient of a horobalB in H? by
aZ,orZ & 7Z parabolic action stabilizing3. The cuspidal thin partof P(M) of
M is the components a¥/(, .,y corresponding to cusps af (see e.g. [BP, Thm.
D.3.13)).

Definition 2.11 Let M be a complete hyperbolic 3-manifold with finitely generated
fundamental group and cuspidal thin paft A relative compact coréM, P) for

M — P relative to P is a smoothly embedded compact submanifeldc M —

P with a collection? ¢ 9M of compact incompressible annuli and tori called
its parabolic locussuch that each component @M — int(P) has negative Euler
characteristic, and

1. MNoP =P,

2. theinclusion: (M,P) — (M — P,dP) is a homotopy equivalence,

3. for each componerft; of P there is a componer®,,y of P such that.(P,))
lies inOP.

We denote byy M the complemer® M — int(P) of the interior of the parabolic
locus indM. Call M — P thepared submanifoldf M.
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We state the resulting decomposition/af.

Decomposition 2.12The pared submanifold/ — P decomposes into a relative
compact corg M, P) relative to P, and a finite collection oénds{E,,}" _, of
(M — P) meetingM in surfacesS,,, C dyM.

Remark: As has become customary (cf. [Th1l] [Mc2]), we refer to as “ends” of
M — P theneighborhood<®,,, of the ends of the topological spagé — P.

When the end?,,, has finite volume intersection with the convex corel\df it
is calledgeometrically finiteandgeometrically infiniteotherwise. The following is
well known (see [EM] or [Min, Thm. 5.2]).

Theorem 2.13 The quasi-isometry type dff depends only on the topology of its
relative compact core: (M, P) — (M — P,0P), its parabolic locusP, and the
quasi-isometry types of its geometrically infinite edtis marked byt|g,,. O

We call the intersectiofM — P)Ncoreg M) thepared submanifold of the convex
core of M. The following is an evident consequence.

Corollary 2.14 The quasi-isometry type @f depends only on the quasi-isometry
type the pared submanifold of the convex cordfof O

The following theorem recasts of a theorem of Marden [Mar, Prop. 5.4]:

Theorem 2.15Let(f: S — M) € 9By. Let the curves{yj};?:l C S represent
its accidental parabolics. Then decomposition 2.12 determines a relative compact
corec: (S x I,P) — M — P, where

P (U§:1Aj X {0}) U(8S x I)

is a collection of annuli such thad; has core curvey;. Incompressible surfaces
Sy = Sx{1}andS,, x {0} c Sx{0},m=1,...,p, make up(S x I) —int(P)
and cut off ends¥y and {E,,,}! _, of the pared submanifold with the following
properties.

1. The fixed end.The surfaceSy cuts off a geometrically finite enf, asymptotic
toY C OM, 1.(m1(Sy)) = f«(m1(9)) stabilizes a unique invariant component
Qy, with \Qy/f*(ﬂ'l(S)) =Y.

2. Geometrically finite ends.The surfaceS,, cuts off a geometrically finite end
E,, if and only ift.(m1(Sm)) = I, is quasi-Fuchsian. For each component
R c ), Xm =02/, 2int(S,,) and E,, is asymptotic taX,, C M.

3. Geometrically infinite ends. S, cuts off a geometrically infinite end,,, if
and only if .. (m1(Sm)) = I, is a totally degenerate group. Furthermore,
20/ Ly & int(Sy,). O

WhenT,, is quasi-Fuchsian, we call the e}, quasi-Fuchsian
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3 Pleated surfaces

Definition 3.1 A pleated surfaces a triple (g, X, N) consisting of a surfac& €
Teich(S), a hyperbolic 3-manifoldV and apleated mapping: X — N:

1. g sends rectifiable arcs iX to rectifiable arcs inV of the same length,
2. gisincompressible, and
3. for eachz € X, g maps some geodesic segment throudgometrically.

Thepleating locusC(g) of the mapy, the set of points € X whereg fails to be a
local isometry, is a geodesic lamination &n(see [Th2, Prop. 5.1]).

Definition 3.2 Letf: S — N be anincompressible map §finto N. ThenPS(f),
the marked pleated surfaces homotopicftoconsists of pairgg, X) of surfaces
(h: S — X) € Teich(S) and pleated mappingg: X — N, sothatgo h ~ f.

We give PS(f) the following topology: a sequencgg,, X,)} — (g,X) if
there are marking-preserving quasi-isometrigs X — X, with quasi-isometry
constantd.(¢,) — 1, such that, o ¢, converges uniformly tg (cf. [Thl, 8.8.1]
[CEG, 5.2.14]). We say the incompressible majs internally non-parabolicif
f«(7) is hyperbolic whenevey € 71(.S) is non-peripheral. We will make use of the
following theorem of Thurston (see [CEG, Thm. 5.2.18]).

Theorem 3.3 (Thurston)Let K C N be a compact subset 8f, andf: S — N a
continuous incompressible map that is internally non-parabolic{lg}, X,,)} be
a sequence of pleated surfacesAs (f) whose imageg,, (X,,) all meetK. Then
{(g9n, X)} has a convergent subsequence,rhas a finite coverV that fibers
over the circle.

Given a pleated surfadg, X) in PS(f), the pleating locuL(g) determines an
element inG£(.S) via the implicit marking onX € Teich(S). The map

L:PS(f) — GL(S)

that assigns to each pleated surfégeX) its pleating locusC(g) € GL(S) is
continuous (see [Th1, Prop. 8.10.4] [CEG, Lemma 5.3.2]).
Notice thaty maps leaves of (g) isometrically. More generally:

Definition 3.4 Let f: S — N be incompressible. A geodesic laminatiane
GL(S), isrealizablein N in the homotopy class of if there is a pleated surface
(g, X) € PS(f) so thatg restricts to each leaf ok on X by a local isometry.

Via its implicit marking f: S — M, anyM € AH(S) determines a subset
R(M) Cc ML(S) of measured laminations whose support is realizabl&/ithe
homotopy class of . We sayu € R(M) isrealizablein M as well. The seR (M)
is dense inNML(.S), and if f is internally non-parabolic definition theR (M) is
open [CEG, 5.3.10].

Thurston proved [Bonl, Prop. 4.5] that there is a unique continuous function

length: Teich(S) x ML(S) — R
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whose restriction to Teidlt) x (Rt x 8) satisfies length (ty) = tfx(v*) where
¢x(.) denotes arclength ol and~* is the geodesic representativerof S on X.
Whenyu € R(M) is realizable by a pleated surfage X ) in PS(f), we define
length,; (1) to be length, (1). Given (M, u) € AH(S) x ML(S) let Ry (p) be
the maximal sublamination’ realizable inM/. Let length AH (S) x ML(S) — R
denote the function
(M, 1) — lengthy (Ras(11)).

Then length is the restriction of length the setk ¢ AH(S) x ML(S) of pairs
(M, ) for which p is realizable inM/. In [Br2, Thm. 7.1] we prove:

Theorem 3.5 LENGTH CONTINUOUS. The functiorlengthis continuous.
We will use following corollary in our applications:

Corollary 3.6 [Br2, Cor. 7.3]Let pairs {(M,, u,)} C R, converge to the pair
(M, p)in AH(S) x ML(S). If lengthy; (1,) — 0 theny is non-realizable in\/.

Tameness Give the pared submanifold of a hyperbolic manifdll the standard
decomposition into its relative compact cov¢ and end<~,,, (decomposition 2.12).

Definition 3.7 An endFE of the pared submanifold Emply degenerati there is a
sequencegc, } of non-peripheral simple closed curves in the boundary component
1(S) of the relative compact core cutting dif whose geodesic representativés

exit every compact subset of the did

Simply degenerate ends are topologically products [Thl, Ch. 9] [Bonl]. The hyper-
bolic manifold M is geometrically taméf all ends E,,, of its pared submanifold are
geometrically tamei.e. either geometrically finite or simply degenerate.

Theorem 3.8 (Thurston, Bonahon)EachM € AH(S) is geometrically tamej/
is homeomorphic tt(S) x R.

4 lteration on a Bers slice
Fix (X,Y) € Teich(S) x Teich(S), and a mapping class Let
Qi =Q(¢'X,Y) € AH(S)

denote the sequence obtained from iteratiop @in the Bers sliceBy, and letQ,,
denote any accumulation point of the sequef@e}2°,, with its implicit marking
f:S — Q. By [Mc2, Thm 3.7] [Bers4, Lem. 1}y is quasi-isometrically realized
on Q. the quasi-isometric distane€y(Q,,), Q) is bounded.

We say a sequence in a Bers slamnverges up to marking-preserving quasi-
isometryto @ if for any accumulation poing)., we haved(Q, Q) < oo. Since
the Teichmiller distancedr (o' X, ¢ X) = dr(¢*X, X) is independent of,
there are (marking-preserving) uniformly quasi-conformal conjugacies between the
uniformizing Kleinian groups fo€); and@; .« for eachi. These conjugacies extend
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to equivariant uniform quasi-isometries betw@mndm (see e.g. [Mc2, Thm.
2.5]) so the quasi-isometric distance

dQ¢'X,Y), Q¢ X,Y))

is uniformly bounded independent©fThus, lower semi-continuity of(., .) [Mc2,
Prop. 3.1] implies that for a convergent subsequdiige}?2, — Q, and anyk, the
sequenCE{Qij+k}J‘?‘;1 converges up to marking-preserving quasi-isometi§) to

A choice of baseframe,, in the limit manifold@, marked byf determines a
Kleinian groupf,(m1(S5)), with

Qp =B/ fu(mi(9)).

In this section we determine the full decompositionfofr;(.5)) in the sense of
theorem 2.15. We show that this decomposition depends onpy on

Combinatorics. Let (II(¢), Se(y), Sp(p)) be the Nielsen-Thurston decomposi-
tion of S for ¢ (see theorem 2.6).

Decomposition 4.1Let € Mod(S), and letQ,, be an accumulation point By
of the iteration{Q(¢* X, Y)}°; C By. Then

1. the minimal reducing partitiod/ () is the set of accidental parabolics ¢},
2. each component &ip () corresponds to a degenerate coveiRdf, and
3. each component &i-(¢) corresponds to a quasi-Fuchsian coverf.

This is a succinct summary of a series of assertions (proposition 4.2 through theo-
rem 4.7); a more detailed version is given in decomposition 4.8.

For reference, we choose pairwise disjoint representatives of the curves and sub-
surfaces of the Nielsen-Thurston decompositidhy), Se(¢), Sp(y)) which we
will denote by the same names.

By the above remarks, the set of all marking-preserving quasi-isometry classes
of accumulation points ofQ;} is identified with the set of marking-preserving
quasi-isometry classes of accumulation pointé@f; }. Since the above description
of the parabolics, quasi-Fuchsian covers, and degenerate covgisi®preserved
under marking-preserving quasi-isometries, it suffices to give the above description
for the accumulation points dfQy;} for any k. To simplify the discussion, there-
fore, we pass to a stable iterateothat also stabilizes the isotopy classes of each
connected component of the subsurfagegp) and.Sp(y).

Proposition 4.2 Let~ € & be an accidental parabolic faf),,. Then

I. i(~,d) = 0for eachd € II(y), and
Il. i(~,n) = 0 for each essential isotopy clagf simple closed curves ik ().

Proof. By theorem 2.15, the isotopy classes of accidental paraboliag fdhem-
selves form a partitiod7p of S (see [Msk1, Lem. 2] or [Mar, Prop. 5.4]). Since



18 Jeffrey F. Brock

¢ is quasi-isometrically realized o, (see [Mc2, Thm 3.7] [Bers4, Lem. 1]y
preserves isotopy classes of parabolic®in Thusy(Ilp) = IIp.

By irreducibility, a pseudo-Anosov mapping class preserves no non-peripheral
isotopy class of simple closed curves. Therefgris not a non-peripheral isotopy
class of a curve in any componesif C Sp(p). Likewise, by a surgery argument
on S, if i(,9Sp(y)) is non-zero cannot preserve. This proves (l1) since if
i(7,n) # 0 eithery is isotopic intoSp () ori(~y, dSp(v)) # 0.

Lastly, if 6 € IT() is an isolated Dehn twisting curve for, theny cannot pre-
servey if i(v, ) # 0. By corollary 2.9, every isotopy class it () is represented
either by a Dehn-twisting curve fgs or a component 0dSp(y). It follows that
i(vy,n) is zero for eachy € II(p), proving (I). O

We now verify part (2) of decomposition 4.1.

Theorem 4.3 If Sy is a component afp (), thenf, (71 (Sy)) is totally degenerate.

Proof. Again, it suffices to prove the theorem for an iterateodhat stabilizes the
isotopy class o by a pseudo-Anosov mapping clags € Mod(Sy).

Lemma 4.4 Let p € Mod(S) have the property thap(u) = cp, ¢ > 1, u €
MUL(S). Then we havéim; . length,, (1) = 0.

Proof. By a theorem of Bers, for eache S we have

lengthyx v (7) < 2min {length (v), length(v)}

(see [Bers2, Thm. 3] [Mc1, Prop. 6.4]). Continuity of length) on ML(S) im-
plies the same inequality holds for lengths of measured laminations. Since we have
length, x (v) = lengthy (¢~ (v)) for all v € ML(S) andX € Teich(S), we have

lengthy, (1) < 2length,: ) (1) = (2/¢")lengthy ().
Thus, length, (1) tends to zero as— oco. O

Let ¢y have unstable laminatign” € ML(Sy). Sinceyy(u*) = cu™ for some
¢ > 1, it follows from the above lemma and corollary 3.6 (or [Bon3, Thm. D]) that
p* is non-realizable irg),.

By corollary 2.9 and proposition 4.2, a connected compofieot the comple-
mentary subsurface determined up to isotopysby I7p containsS, up to isotopy.
The subgroupf.(m (T)) cannot be quasi-Fuchsian sing& lies in ML(T) and
is non-realizable [CEG, Thm. 5.3.11] [Th1, Prop. 8.7.7]. Since the only elements
B € m(T) of m (T') with parabolic imagef. () are peripheral if", it follows that
f«(m1(T)) is totally degenerate by theorem 2.15.

We claim thatT" is isotopic toSy. It suffices to show that each boundary compo-
nent of Sy is parabolic inQ,. Assume on the contrary thatC 0.5y has geodesic
representativey in Q. Let weighted simple closed curvgs,(,} C ML(Sy)
converging tqu" determine geodesics in Q.
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Pleated surface g,, X,,)} C PS(f|r) realizingyUt,(, have imageg,,(X,)
that all intersect the compact sgt. The mapf|r is internally non-parabolic, so by
theorem 3.3, continuous variance of the pleating locus, and openness of the realiz-
able laminations iM L(T) ([CEG, 5.3.2., 5.3.10]), we may pass to a convergent
subsequence converging to a limit pleated surfacg X ) that realizes the limit

lim vy Ut =y U p"
n—oo

in ML(T), contradicting non-realizability ofi”. It follows that-y is parabolic in
Q,, and sa)S, consists of parabolics. Hencs is isotopic toT’, and f. (w1 (Sp))
is totally degenerate. O

The next two theorems verify part (1) of decomposition 4.1.

Theorem 4.5 Each isotopy class ifi/ (¢) is an accidental parabolic.

Proof. Let 6 € II(¢) — 0Sp(v). By corollary 2.9, Dehn-twists abou8. Since
we have shown each isotopy classiifip () is an accidental parabolic f@p.,, it
suffices to prove thatis an accidental parabolic.

Letn € 8 be such that(n,d) # 0 andi(n,II(¢) — ) = 0. Consider the
sequence ' ‘

tip'(n) where t; = 1/lengthy (¢*(n))

of length-1 measured laminations oK. As ¢’(n) winds more and more around
§, any¢ € § has intersection numbé(¢, ;' (1)) tending toi(¢, 6)/lengthy ().
Thus, the sequendg; v’ (n)} tends to the laminatiofi/lengthy (&) in ML(S) asi
tends to infinity.

Furthermore, we have

length, (tig'(n)) < 2length, x (ti’ (1)) = 2t;lengthy (n)

which tends to 0 as — oo. Thus, by corollary 3.6j is non-realizable irf),,, and
we conclude thad is parabolic inQ),. (One may also argue as in [K¥3]). O

Theorem 4.6 The partitionIIp by accidental parabolics of), and the minimal
reducing partitionI () for o are identical.

Proof. By theorem 4.5, we havB () C IIp. Let F; be a component (). By
theorem 4.3 it suffices to prove that any accidental parabolig iis peripheral.

Let v € 8§ be an accidental parabolic ify. By stability, we havep(y) = ~
and () = 9). If v is not peripheral inky, there is & € 8§ lying in Fy so that
i(d,v) # 0. Since~ is parabolic, and the accidental parabolics form a partition
of S, § has positive lengttL in Q.. By continuity of the length ob on AH(S),
lengthy,, (§) remains bounded below throughout the sequence.

Sincep(d) = 4, length,; x (9) is constant as tends to infinity. By a theorem of
Sullivan, generalized by Epstein and Marden [Sull, Prop. 1] [EM, Lem. 2.3.1] there
is a universalK so that we have

lengthy, o, (6) < Klengthy_q. (0)
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and likewise for9,,Q; andd.Q;.

Let (6,); and(d,); denote the unique geodesic representatives in the free homo-
topy class of on d;,(Q;) anddy(Q;). Let (6*); be the geodesic representativesof
in @Q;. Since length: v (6) is constant, both lengths

Iengtrbh(Qi)((S) and Iengt%h(@i)((s)

remain uniformly bounded above throughout the sequence. Construct pleated cylin-
dersC; in corg ;) representing the free homotopy clasg @ that

1. 0C; = (5h)z U (gh)ia and
2. (6%); C C;

(cf. thepleated annulusonstruction of [Th4§3]).

Since the lengths ofs;,); and(d;,); remain bounded, and the length(6f); re-
mains boundebelow the diameter of each cylindér; remains uniformly bounded
by someK’ > 0 throughout the sequence. Sin¢e, §) # 0, it follows from [Bonl,
Lem. 3.3] that the unique geodesig*); in the free homotopy class efin Q; must
intersecC; for eachi. Since lengtp (v) tends td) asi tends tox, (v*); is arbitrar-
ily deep in the Margulis thin paiQ;) o,y Wherees is the 3-dimensional Margulis
constant (see e.g. [BP, Thm. D.3.13]). Once the depth is greaterthamoth C;
and(v*); lie in the same component ¢f);) o.,), which violates the thick-thin de-
composition sincey andd do not commute inrq (S). Thus,~ is peripheral inFy,
andIlp = II(p). O

Finally, we verify part (3) of decomposition 4.1.

Theorem 4.7 If Fyy is a component afg (), thenf. (w1 (Fp)) is quasi-Fuchsian.

Proof. By the previous theorem, an isotopy classf essential simple closed curves
in Fy is parabolic if and only if it is peripheral if. Hence, the restrictiofi.| ., ()
determines an element dfH (F}) with no accidental parabolics. By theorem 2.15,
f«(m1(Fo)) is either totally degenerate or quasi-Fuchsian.

Let 0 be a non-peripheral isotopy class #3; thend is non-parabolic inQ),,
and thus Iengt@g}(é) = L > 0. Construct uniformly bounded diameter pleated
cylindersC; through(d*); as in the proof of theorem 4.6.

If f.(m1(Fp)) were totally degenerate, tameness (theorem 3.8) implies there
would be a sequenceg C Fy of essential simple closed curves, non-peripheral
in Fy whose geodesic representatives leave every compact subset @ gpreet
Q(Fy) = 13/ f.(m(Fp)), and let pleated surfacés;, X;) € PS(f|r,) realizec;
in Q(Fp). Applying [Bus, Thm. 5.2.6] there is a uniform constdhtso that given
X € Teich(F),) we can always find enaximalpartition of £} all of whose elements
have length less thaB on X . Thus there are simple closed curvgse S(Fj) so
that Iengtlj(]_ (d;) < B for eachj, and eithetl; = ¢; or the geodesic representatives
of d; andc; on X intersect. The curved; assume an infinite number of distinct
isotopy classes since otherwise some culyewould have bounded length repre-
sentatives irQ(Fy) with arbitrarily large separation, forcing, to be parabolic.
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There are constants — 0 so thatt;d; tends to a non-zero lamination €
ML(S) after passing to a further subsequence. But lepgth(t;d;) < t;B — 0,
sov is non-realizable ifQ(Fp), by corollary 3.6. We claim thait(d, d;) > 0 for j
sufficiently large: otherwise, sincélr, is internally non-parabolic, a sequence of
pleated surfaces realizingandd; has a convergent subsequencéifi( f|r,) (by
theorem 3.3, as in the proof theorem 4.3) whose limit realizes

Thus geodesic representativieg)* of d; in any @Q; intersect the cylinde€;
for j sufficiently large. Since lengf)(d;) tends to Iengt@g} (d;) for eachy, given
a € Z* there is anN, so that for ali > N,, we have

lengthy, (d;) < 2B

for all j < a. But the diameter of’; is uniformly bounded, and the nhumber of
homotopically distinct simple closed curves of length bounde@® Bythat inter-

sect a set of bounded diameter in a hyperbolic 3-manifold is bounded. Therefore,
f«(m1(Fo)) is not totally degenerate, so it is quasi-Fuchsian.

Accumulation points. We assemble in one place the structural information about
Q.. Let S,,, m = 1,...,p denote connected componentsSif(¢) and letF,,
n=1,...,qdenote connected componentsSe{y).

corgQy)

Figure 5. The convex core of a limit @, of iteration of ¢ on By-.

Decomposition 4.8Let ¢ be a stable mapping class. Lef: S — Q) be any
accumulation point of Q(¢'X,Y)} C By with cuspidal thin partP,. Theny
determines the following decomposition of the pared submarifgle- P,.

1. Therelative compact core.: (M,P) — (Q, — P,,0P,) has parabolic locus

P = ((98) x 1)U (NTII()) x {0}) and relative boundary

oM = (Sp(p) x {0}) U (Sr(p) x {0}) U (S x {1}).
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2. There is a geometrically finifexed end Ey of Q,, — P, asymptotic td&” C 9Q.,
cut off by.(S x {1}) such that, (71 (S x {1})) = f« (m1(5)).

3. Each component ofSg(¢) x {0}) cuts off aguasi-Fuchsian endof @, — P,
asymptotic to a surfac&’,, C 8@.

4. Each component of Sp(¢)x{0}) cuts off asimply degenerate enafQ,—P,.

5 Asymptotic geometry

In the case of iteration of a pseudo-Anosov mapping class a Bers’ slice, sim-

ply degenerate ends arising in the limit @gymptotically isometrito a standard
model depending only o (see [Mc2,53.5]). For a general stable mapping class
, we show that a similar analysis holds wherénduces a pseudo-Anosov map-
ping classy) on a subsurface. This gives a model for the quasi-isometry type of an
accumulation point of Q(¢* X, Y)}2, that depends only op.

Three-manifolds fibering over the circle.Given+y € Mod(S), its mapping torus
is given by the identification

Ty =S8 x1/(z,0)~ (¢(z),1).

The manifoldT), fibers over the circles* with monodromy map by projection of
each surfaceS, t) to ¢. Its orientation is given as the product of the orientatiorSon
with the orientation of . Thurston proved the following remarkable theorem [Th4].

Theorem 5.1 (Thurston)Giveny € Mod(S), the mapping toru§’, is hyperbolic
if and only if« is pseudo-Anosov.

The pseudo-Anosov mapping clagsanonically determines an elemevit, <
AH(S) by passing to the cover corresponding.6r(S)) where.: S — Ty, is
the inclusion of a fiber.

In[Mc2], McMullen gives a construction of the hyperbolic structurelgrbased
on the iteratior) (¢* X, Y") of ¢) on a Bers’ sliceBy . A consequence is the conver-
gence of such iteration ([Mc2, Thm. 3.11]), which follows from a classification of
the new degenerate ends in any pair of algebraic accumulation points up to quasi-
isometry. In this section we relate this discussion toitftkiced pseudo-Anosov
mapping classes of a general mapping class. Our main tool will be the following
theorem [Mc2, Thm. 3.17] which characterizes pointsdifi (S) that tend to)M,,
under iteration ofy) on AH (S) in terms of the asymptotic geometry of their degen-
erate ends.

Theorem 5.2 (McMullen) Let @ belong toAH (S). Theny™(Q) — M, if and
only if the negative end of the pared submanifol@afdmits an asymptotic isometry
to that of M,, compatible with markings.

In our setting, the theorem asserts the existence of a marking and orientation pre-
serving diffeomorphisnk: £ — £, from the negative end of the pared subman-
ifold of @ to that of My, so that for anyk and anye > 0, there is a compact set
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K C E such thath is e-close to an isometry in th€”* topology onE — K. (cf.
[Mc2, pp. 55]). In particularh is a quasi-isometry of.

To distinguish the negative and positive ends of the pared submanifdlfi f
AH(S), we remark that by tameness (see theorem 3/8)s homeomorphic to
int(S) x R. By requiring that this homeomorphism preserve orientation, we may la-
bel the ends of the pared submanifoldidf‘positive” and “negative” corresponding
to the positive and negative endskfIn particular, whert is closed and) (X, Y)
thus has no cusps, the negative en@6X, V') is asymptotic taX and the positive
end of Q(X,Y) is asymptotic tdy".

Asymptotic geometry.For iteration of a stable mapping classdecomposition 4.8
gives a correspondence between compongpts. Sp(y) of the pseudo-Anosov
subsurface fop, and simply degenerate enHf the accumulation poirtf: S —
Q,) € By of iteration ofy on By . Passing to the least iterate pthat leaves each
component ofSp () invariant, consider the action of the pseudo-Anosov mapping
classy € Mod(Sy) induced byy on Sy. Let p®, pu* € ML(Sy) be the stable
and unstable laminations fg@r. By decomposition 4.8 the subgroyp(m(Sp)) of
f«(m1(9)) is totally degenerate, and' is non-realizable irg).,.

Let E, be the degenerate end Qf, — P, cut off by the surface(Sy x {0})
as in decomposition 4.8. L&t, -1 denote the mapping torus for! and M1 €
AH(Sp) its cover corresponding to the fiber. LBt -1 denote the cuspidal thin part
M. Then the negative end 8/, — P,,-1 gives a model forz.

Theorem 5.3 The endE, of Q, — P, is asymptotically isometric to the negative
end of My, -1 — Py-1.

Proof. Consider the covel! = H?/ f.(m1(Sp)) corresponding tgf.(m1(Sp)). The
marking onQ,, naturally determines a marking dd, which in turn determines an
element ofA H (Sy) sincef.(3) is parabolic for each boundary compongtin 0.5.
Denote byMy = (fo: Sy — M) this cover marked by a homotopy equivalerfge
such thal( fo)« = filr, (s,), With its cuspidal thin part.

The degenerate enfey of Q, — P, lifts isometrically to the negative end of the
pared submanifold/y — P, of M (see figure 6). By theorem 5.2, then, it suffices

Figure 6. The cover corresponding to the end Ej.

to show that/, converges td/,,—1 under iteration of)~ on AH (Sp).
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Theorem 5.4 The sequencé)~" (M)} converges taV,,—1 in AH(Sp).

Before proving theorem 5.4, we discuss a central tool in its proof.

CompactnessWe must first show that the sequenge™ (M) = M,, ranges in a
compact subset ol H(Sy). The case whep = ¢! is discussed in [Mc2§3]:

by Thurston’s double limit theorem [Th4, Thm. 4.1] (see also [Otall, Thm. 5.0.1],
[Canl, Thm. 6.1]) the quasi-Fuchsian manifol@&)’ X, 7Y, i, > 0, range in

a precompact subset dff (S). Since each\/,, is a limit of Q(1/ "X, ~"Y) as

i tends tooo, M, lies in the compact closui@ (' X,¢=7Y) c AH(S),i,7 > 0.
Thus the sequendg\/,,} converges up to subsequence.

Our situation differs slightly in that while each/,, covers a limit of quasi-
Fuchsian groups, it is not itself given as such a limit. We resort to the following
internal formulation of the double limit theorem ([Th4, Thm. 6.3]): a pair of mea-
sured laminationg, v € ML(S) bindsS if for everyy € 8§ we have

i(p, ) +i(v,y) > 0.

Theorem 5.5 (Thurston)If {M,,} is a sequence il H (S) of marked hyperbolic
3-manifolds and.,, — p andv,, — v are sequences of measured laminations such
that

lengthy, (un) and lengthy, (v)

remain bounded, then if andv bind the surface, there is a subsequence{d¥f/,, }
that converges.

Corollary 5.6 COMPACTNESS The sequencd/,, = ¢~ "(Mj) ranges in a com-
pact subset oA H (.S).

Proof (of corollary 5.6) We exhibit sequenceg:,, } and{v,} in ML(Sp) tending
to * andu® whose lengths id/,, remain bounded. This suffices, singé and.*
bind the surface.

LetoMy =T € Teich(Sy). Then we havéM,, = v~ "T. Asin lemma 4.4

1
length, 7 (1*) = —lengthy(1°),

for somec > 1. SinceT is incompressible, continuity of length together with [EM,
Lem. 2.3.1] (cf. [Sull, Prop. 1]) guarantees that there is a universal codstaumth
that

Klength,np(p*) > lengthy,, ().

It follows that length, (1*) tends to zero as tends to infinity.

Note that)M,, and hence eacht,,, has no accidental parabolics. et(;} be a
sequence of weighted simple closed curves tendipdf t&inceu” is non-realizable
in My, ¢ exits every compact subset of cOiéy). Otherwise, a subsequence of
pleated surfaces realiziqgwould converge to a pleated surface realizirfigoy the-
orem 3.3, as in the proof of theorem 4.3. Then by continuity of lengéorem 3.5,
{lengthy,, (t;¢;)} tends to zero astends to infinity (see also [Otall, Thm. 6.2.11],
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[Thl, Prop. 9.3.4]). Since" is preserved by) up to scale, it is non-realizable in
every M,,. Thus, for any fixed constarf > 0 and anyn there is ani,, so that
ti, G, has length, (t;,¢;,) < C. The sequencesg, = t;,(;, andv, = u® have
bounded length inV/,,, and converge to laminations* and x® that bindS. Thus,
by theorem 5.5{,,} converges after passing to a subsequence.

Convergence to the fiberWe now prove theorem 5.4. The argument mirrors the
construction of the hyperbolic structure on the mapping t@fusvhich appears in
[Mc2, §3.4], [Otall, Ch. 6], and in [Th4].

Proof (of theorem 5.4Pass to a subsequence{df,, } converging to a limit\/, €
AH (Sp). Choose convergent lifid\/,,, w,, ) to AH,,(Sp) converging to M, weo)-
Such lifts determine representatigns: 1 (Sy) — PSLy(C) converging on gener-
ators to a limitp... Note that)M,, are different markings of the same manifdid,
and thew,, are frames in/.

We claim the baseframes, travel arbitrarily deeply into the convex core of
M. Letn be a non-peripheral element of(Sp). By algebraic convergence, the
translation distance af,(n) atw,, is uniformly bounded byl. > 0. This means
there is a path{n), C M, based atv, representing; of length bounded by..

But the pathgn),, representlistincthomotopy classeg™(n) in the manifoldM,.
Hencew, leaves every compact subg€tC M as there is a uniform boungk 1,

to the number of closed curves in distinct homotopy classes with length atimost
in K. By algebraic convergencey, lies in (M), gy for somer > 0 andR < oo,

so it follows that the baseframes, travel arbitrarily deeply into the convex core.
Thus, the limit setsA(p,(71(S))) converge toC in the Hausdorff topology (see
[Mc2, Prop. 2.3)).

Since M, lies in AH(S), it is geometrically tame, and we have (in) < R

for eachz € corg M) (see [Can2, Thm. 6.2] [Bonl]). We pass to a geometrically
convergent subsequence{df\/,,, w, )} converging geometrically to a lim{tV, w).
Let H® uniformize the geometric limifV,w) as the quotientH*,&)/I¢ by the
Kleinian groupl ;. By compactness in the geometric topology and continuous vari-
ance of the limit sets [Mc2, Prop. 2.4] the injectivity radius/¢fis bounded byR
throughout coréV'), and the limit setA(I;) is all of C.

The quasi-isometric realization gf ! on Q. lifts to a quasi-isometry : My —

My in the homotopy class af~!. For eachn, there is a lift

@n:MnHM\;

whose uniformly quasi-conformal extension (by [Mc2, Thm. 28]): C - C
induces the precomposition by ' of p,,: in other words, for each we have

— —1 _
Qn'pn(g) -6y an(lb* 1(9))'

Choose three non-peripheral non-commuting elements =1 (Sy), « = 1, 2, 3.
The attracting fixed points ¢f, () in C are distinct for each, and converge to the
distinct attracting (or possibly parabolic) fixed pointspaf(7,), < = 1,2, 3, since
Poo IS discrete and faithful. The uniformly quasi-conformal conjugaégsnap the
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triple of attracting fixed points of,,(7,;) to the triple of attracting fixed points of
pn (W1 (nk)), so it follows that they have a quasi-conformal lir@lt, after passing
to a subsequence [Garl,.8, Lem. 6].

The limit O, has the property that

@'Poo(g)'@ :Poo(w*_l(g))'

Moreover, any element € I is the limit of a sequencép,,(g,)}>>, for some
sequence g, o, C m1(Sp). Since we have

—1

—-—1 —
On - pnl(gn) - On = pu(¥y 1(971))
it follows that p,, (1/; 1 (g,,)) also converges in PSLC) with limit 4/ € I'c. Thus

0w -Ic On ‘=TI,

It follows that there is a quasi-isometfl: N — N covered by a quasi-isometry
B: M — Ms in the homotopy class af~': i.e. so that3 o fo ~ foo 0 0™, by
extendingd,, to H?.

SinceA(I'g) = C, and injz) < R for eachxz € corg N), the grouplg is
quasi-conformally rigid (see [Mc2, Thm. 2.9], [Sul2]). Her@g, is conformal. The
induced isometr¢: N — N lifts to an isometryn: Mo, — M, in the homotopy
class ofyy)~! so the quotiend/, /() is a hyperbolic manifold homotopy equivalent
to T),-1. By a theorem of Stallings [Sth /(o) = Tyy-1 and My = My-1. O

Continuation of the proof of theorem 5By theorem 5.4, the sequengeé " (M)}
converges ta\/,,—1 in AH(Sp), so we are finished. O

Algebraic limits. Having analyzed simply degenerate ends arising from iteration,
we are ready to prove the following theorem.

Theorem 5.7 QUASI-ISOMETRIC ALGEBRAIC LIMITS. Let ¢ be an element of
Mod(S), and let@Q, and Q:O be any pair of accumulation points of the iteration
{Q(¢'X,Y )}, C By. Then there is a quasi-isomet&): Q, — QZD compatible
with markings.

Proof. When ¢ has finite ordes, the quasi-Fuchsian manifold€)(¢'X,Y)}5_;
are mutually quasi-isometric in a manner compatible with markings.

Let  have infinite order. LeP, and P}, be the cuspidal thin parts ¢f, andQ,
respectively. By decomposition 48,, — P, anngo — P’ admit relative compact
cores with a common modéM, P) up to diffeomorphism given bym = S x I

andP = N (I1(y)) x {0} U ((9S) x I). Choose inclusions
v: (M,P) = (Q, — Pp,0P,) and : (M, P) — (Q, — P,,dF,).

WhenSp(p) # @, there is a correspondence between simply degenerateqgnds
andEy,,m =1,...,p, of Q, — P, andQ/, — P, each cut off by.(S,, x {0}) and
/(Sm x {0}) for each componer,,, C Sp().
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After passing to an iterate af that stabilizes each componesit,, let v, €
Mod(S;,) be the pseudo-Anosov mapping class inducedsgn By theorem 5.4,

E,, and E/, are each asymptotically isometric to the negative end of the pared
submanlfold ofM -1 in a manner compatible with marking.

Since ), and Q’ have relative compact cores with the same topology and
parabolic locus, and their corresponding simply degenerate ends admit marking-
preserving quasi-isometries, by theorem 2.13 there is a marking-preserving quasi-
isometry

0: Qy — Q.

6 Geometric limits and convergence

In this section we show that iteration of a stable mapping class on a Bers slice
converges algebraically and geometrically.

By analogy with the finite order case, we go on to validate the hypothesis of
stability by showing that whenever the complex dimension of Tgghs greater
than one (cf. corollary 6.11) there exigiss Mod(.S) andX € Teich(S) so that the
iteration{Q (' X, Y)}2°, has more than one algebraic accumulation point.

Convergence theoremsOur main goal in this section is to prove:

Theorem 6.1 STABLE ITERATION CONVERGES Let » € Mod(S) be a stable
mapping class. Then the sequercg(¢’X,Y)}2, converges algebraically to a
limit @, and geometrically to a limitv covered byQ,.

The theorem is established for pseudo-Anosov mapping classes in [Mc2, Thm.
3.11], [CT,§7]. The algebraic and geometric limits agree, and they do not depend
on X . We will first establish the following lemma.

Lemma 6.2 Letp € Mod(S) be a mapping class. L&d, and @/, be any pair
of accumulation points of the sequenf@(¢’X,Y )}, in By. Let N and N’
be geometric accumulation points covered@y and ng after passing to further
subsequences.

_ Then there is a quasi-isomet§y: N — N’ that is covered by a quasi-isometry
0: Q, — @, compatible with markings.

As in the finite order case, we have the following corollary of theorem 6.1.

Corollary 6.3 For any mapping clasg € Mod(S), the number of algebraic and
geometric accumulation points of the sequef€¥ ' X,Y)} is bounded by the
stable powes for ¢.

(See definition 2.8; recall that the stable power is bounded in terrfiy of

Outline of the proofWe outline our approach to theorem 6.1. By a re-marking
trick, we may build any geometric limi¥ directly by a gluing (combination) of al-

gebraic limitsQ,, of Q; = Q(¢'X,Y) andQ,-1 of o~ (Q;) = Q(X, ¢ ™'Y along
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their common quasi-Fuchsian ends. This is justified by a gemguaig lemma

(lemma 6.5) which describes a process by which covers of the geometriéViofit

a sequencéd/; € AH(S) may be built from algebraic limits of different markings

fi S — M;andg;: S — M; of the manifolds)M;. After gluing @, andQ -1 we

have a manifold that coverg, and by consideration of the domains of discontinuity

(proposition 6.6 and corollary 6.7) we find the covering is a homeomorphism.
Quasi-isometries between pai¥sand N’ of geometric accumulation points are

constructed by gluing together marking-preserving quasi-isometries between pairs

of algebraic accumulation points 6€);} and{¢~*(Q;)}, proving lemma 6.2. Con-

sideration of the conformal boundary shod®& = X LY = dN’, so by rigidity

these quasi-isometries are homotopic to isometries. This proves algebraic and geo-

metric convergence (theorem 6.1).

We briefly introduce new terminology to discuss gluing hyperbolic manifolds,
prove the gluing lemma, and go on to prove lemma 6.2 from which theorem 6.1
follows. To discuss the gluing process, we allow the complete oriented hyperbolic
3-manifold M to be disconnected.

The quasi-isometric deformation spagecomplete oriented hyperbolic 3-manifold
M has aquasi-isometric deformation spa@ef(M) consisting of pairgh, N) of
hyperbolic 3-manifoldsV marked by quasi-isometries

h: M — N

up to isometries preserving orientation and marking. The quasi-isometric distance
d(.,.), defined analogously to that ot/ (.S), determines the topology on O&éf/ ).
WhenoM is incompressible, work of Ahlfors, Bers, Mostow, Prasad, Kra, Maskit
and Sullivan culminates in a fundamental parametrization fof ef in particular

by a theorem of Sullivan, provided either (1) is finitely generated ([Sul2, Thm.

V.]), or the injectivity radius is bounded on c@rd ) ([Mc2, Thm. 2.9]), we have

Def(M) = Teich(OM)
via the natural projection (e.g. [Kra, Thm. 14]; see also [Th2, Thm. 1.3]).

The skinning mag.et M be a complete oriented hyperbolic 3-manifold, with con-
formal boundary)M. Assumel is not itself quasi-Fuchsian, and &M C OM
denote the subset consisting of componéfits- 0 M whose corresponding covers
are quasi-Fuchsian. Tis&inning map

o: Teich(0gs M) — Teich(Oqe M )

is defined by passing to each quasi-Fuchsian cover and recording the structure of the
new conformal boundary component. While the natural cove@ad/, c(W)) —

M, extends to an embedding a7, the surfaces(W) does not embed (unless

M = Q(W,o(W))), and its structure depends on the structures on all surfaces in
OM simultaneously.

4 At this point, the homeomorphism type f (theorem 1) can be deduced, but we defer thirto
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The gluing problemLet G C 0, M be a portion of the quasi-Fuchsian conformal
boundary forM so that for each componenf;, of M, we haveG N dMy # &. An
orientation reversing fixed-point-free involutien G — G determines an isometry
7: Teich(G) — Teich(G). Thenr determines gluing problemfor the deformation
space DefM ) of M, which seeks a fixed point for the composition

T oo|g: Teich G) — Teich(G)

(cf. [Mc1, §3.3] [Mor, §9] [Otal2]). Once found, a fixed pointfor r o o
the gluing problem as follows: if

a, solves

pr: Def(M) — Teich(GQ)

is the natural projection, then any manifald’ € {p-'(z)} has quasi-Fuchsian
ends corresponding t& that are isometrically compatible with the gluing data
7. Then thegluing M'/7 of M’ by 7 is the complete (connected) hyperbolic 3-
manifold obtained by isometrically joining together the quasi-Fuchsian ends that
correspond under the involutian M’ is called asolutionto the gluing problem for

the gluing datar.

The existence and standard properties\f/~ follow from the Klein-Maskit
combination theoremdor example, [AC, Thms. 8.1, 8.2] (we refer the reader to
[Msk2, Thms. VII.C.1, VII.E.5] for more detailed versions). Whil’ /7 is not
literally a gluing of the Kleinian manifold\Z’ along its conformal boundary, the
complete hyperbolic manifold/’ /7 is realized as an isometric gluing along em-
bedded surfaces truncating the quasi-Fuchsian ends corresponding to

Compatible covering spaceket M be a solution to a gluing problem: G —
G, for G C 04M. For each componerit’ C G, the quasi-Fuchsian manifold
Q(W,o(W)) determines a covering space/df. That}/ is a solution implies that
the two covering space3(W,o(W)) andQ(7 o o(W),o(W)) are isometrically
identified as the quasi-Fuchsian manife)l which coversy by two distinct cov-
erings

g1: Q@ —> M and ¢2: Q — M.

The covering mag; extends to an embeddigg: W — 0M and the covering map
¢2 extends to an embedding: (W) — OM.

When 7 identifies more than one pair of surfaces, we allgwo be a discon-
nected union of quasi-Fuchsian covering spaced dbne component for each pair
of surfaces identified by) and letq; : Q — M andqy: Q — M be covering maps
defined as above on each componer®of

A choice of baseframe € @, naturally identifies a (quasi-Fuchsian) Kleinian
group’(Q) uniformizing the component @ containingw, and the imageg; (w)
andgx(w) identify Kleinian groupsl’; (M) and>(M) uniformizing the connected
component ofd/ containingg,.(w) so that the standard frame at the originHh
lies overg,(w), Kk = 1,2.

The groupsl ' (Q) < I (M), I'o(M) satisfy the hypotheses of the first combi-
nation theorem ([AC, Thm. 8.1]) if; (w) andgs(w) lie in different components of
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l M/7 =B /([ (M), To(M))

Figure 7. Isometrically gluing hyperbolic manifolds.

M and the second combination theorem ([AC, Thm. 8.2]) if they lie in the same
component. The gluing//7 is thenH? /I, whereT, is the result of successive
combinationsandHNN-extensionsf I'; (M) and I (M) along the quasi-Fuchsian
subgroupsd’(Q) determined by choosing a baseframén each component a
(see also [Br3, App. B], [Mc1§3.3)).

Using the combination theorems, the following facts about gluings are easily
verified. LetM solve the gluing problem for. Then we have:

Gl If G C O0q¢M is the domain forr, thend(M /7) = OM — G.
Gl Each component aff coversM /T by a local isometry.
Glll If N is another hyperbolic 3-manifold, and there are locally isometric covering
maps
Q q1 M p1 N

q2 p2

that arecompatiblewith 7:i.e.p; 0 g1 = p2 0 g2 andr oy |y is isotopic togz o oy,
then the gluingV/ /T coversN by a local isometry.
The following theorem concerning gluings seems to be well-known:

Theorem 6.4 Let M be a solution to the gluing problem determinedand let
M’ € Def(M) be any other solution. Then there is a quasi-isometry

O: M/t — M'T
so that any lift9: M — M’ is marking-preserving.

Proof (sketch)We sketch a proof of theorem 6.4 (see also [Br3, App. B] for more
detail). LetF' be the (in general disconnected) surface with one component for each
pair of surfaces to be identified by the gluing magwith the previous notatiof' =

G /7). By work of Maskit [Msk2] and Anderson-Canary [AC, Lem. 3.1, 6.3] there

is a properly embeddegluing surfaces: F' — M /7 so thats is incompressible on
each componenk), of F' and so that(s|g, )«(m1(Fn)) = (p1 © q1|Q,)«(m1(Qn))
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where@,, C @ is the quasi-Fuchsian component@torresponding td;, (the im-
ages(F) is the quotient of @ystem of spanning diskene for each quasi-Fuchsian
subgroup involved in the combination). Moreovermay be taken to be totally
geodesic on neighborhoods of the endg/of

The maps lifts to a maps: F — @ whose image separatésinto two disjoint
setsF; and F; so thatg; is an embedding off; andgs is an embedding o, (cf.
figure 7). Likewisep; is an embedding oty (E2), ps is an embedding o, (1),
andM /7 is the isometric identification

M/T = (M = qi(E1)) Us (M — g2(E»))

where7: q1(5(F)) — g2(5(F')) is defined by (q1(5(z))) = ¢2(5(x)).

Lets': F — M'/r be the gluing surface fab/’ /7 with lift §: F — @’ and
letg): @ — M’ andg,: Q" — M’ be the corresponding covering maps. &t
be the natural marking-preserving quasi-isoméygy M — M’; perturb®; so it
restricts to a quasi-isometry of pared submanifoldadfoand/’.

There is ane so that the cuspidal parts. and P/ of M and M(/o,e) in-
tersects(F) and s'(F) in totally geodesic cylinders asymptotic to cusps. Taking
M — P. and M’ — P! as our pared submanifolds insures that the intersections of
@1 (8(F))Uqe(8(F)) andgy (8'(F)) U ¢4 (8 (F)) with the pared submanifolds aff
and M’ are surfaces cutting off corresponding quasi-Fuchsian ends. After precom-
position ofs’ by an isotopy, we may adjus}, by a homotopy in a compact neigh-
borhood ofs(F") to obtain a quasi-isometr§(, so thato( (¢ (5(x))) = ¢1(5'(z))
ande) (ga(3(2))) = ¢ (3 ().

It follows that©)|, respects the gluingd//r andM’/7: ©/, determines a quasi-
isometry®: M/t — M’/7 of the gluings, and by construction any @ M —

M’ of © to M is marking preserving. O

The gluing lemma. The following lemma should be a useful tool for studying al-
gebraic and geometric limits of general sequence$ih(.S).

Lemma 6.5 THE GLUING LEMMA. LetT C S be a connected, essential, proper
subsurface of negative Euler characteristic. Let

(fi: S— M;)— (f: S— M) and (g;: S — M;) — (¢g: S — M)

be convergent sequencesAif/ (S) such that(f;).| ., () is conjugate tqg; )|, ()

in 71 (M;) for eachi. Then any geometric limiv' of M; covered by: M — N is

also covered by': M’ — N, so thatp. o fi|, (1) = Pl © g«|x, (1) UP to cOnjugacy.
If, moreover,

a) the limit f,.(71(T)) is quasi-Fuchsian, and
b) Q(W, Z) = B/ f.(m1(T)) coversM and M’ by covering maps that extend to
embedV in OM and Z in OM’,

then M LI M’ solves the natural gluing problem with data W = Z such that
e = id, (1), and the coverQ(W, Z) — M — N andQ(W, Z) — M’ — N are
compatible withr.
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Proof. We first verify that we may pass to a subsequence to extract a geometric limit
N that is covered by both/ andM’. Recall from the proof of proposition 2.3 that
the geometric limit covered by/ is obtained via choosing baseframese M;

that determine convergent lifts tH,,(.S): the based manifolds/;, w;) determine
Kleinian groupsl; and the markingg;: S — (M;,w;) determine an algebraically
convergent sequence of representatjgnsr (S) — PSLy(C) (with imager;) that
converge to a limip,, = f. on eachn € m1(S).

Since (fi)«|x, (1) is conjugate tg;)«|~, () and p;(m1(T')) is non-elementary,
the markingg;: S — (M;,w;) also determine algebraically convergent representa-
tionsp;: m1(S) — PSLy(C) (also with imagel;) tending tog,, = g«. AS in propo-
sition 2.3, we may pass to a geometrically convergent subsequehtg af;) con-
verging to a hyperbolic manifolV, w). The geometric limitV is naturally covered
by M andM’. Let

p:M—N and p': M' = N
denote the locally isometric covering projections.

We verify that the images, o f.(m1(T)) andp’, o g.(m (T)) are conjugate in
m1(N). Let I'; be the Kleinian uniformization of NV, w).

Choose any three non-peripheral nhon-commuting elemgnts = 1,2, 3, in
m1(T). Then there are elemeritse ; (M;) such that

(fi)x(k) = bi 0 (gi)«(m) 0 b; !

for eachi and eachx. The elementy;(n,) of PSL(C) are conjugate by; €
I; to 0i(nx), for k = 1,2,3. Sincep; and g; converge on each,, the attracting
(or parabolic) fixed points op;(n.) are mapped by each; to the attracting (or
parabolic) fixed points fop; (7). The fixed points op;(7,) converge inC to the
distinct fixed points ofo(7,) and likewise for the fixed points aof;(7,), so the
elements3; converge to an elemerit that conjugates the fixed points pf, (1)
to the fixed points ob.. (7). Sinces; € I3, it follows that 3 is contained in the
geometric limit/'z. Hencep. o f.l, (r) andp, o g«|, () are conjugate im(N).
Assuminga) andb) hold in addition, we may pass to the cover corresponding

to p. o fi(m1(T)) to obtain the quasi-Fuchsian manifd{W, Z) € QF(T). By
hypothesi), the locally isometric covering ma@ (W, Z) — N, factors through
coverings toM and M’ that embedV in 9M andZ in OM’. Evidently, M U M’
solves the gluing problem determined by the natural gluing involution

T W=2Z
satisfyingr.. = id,, (7). Moreover, the locally isometric coverings
QW,Z) - M — N and QW,Z) — M — N

are compatible withr, and thus, the gluingM LI M") /7 coversN by a local isom-
etry. O

Carathéodory convergenceWe wish to apply the gluing lemma (lemma 6.5) to the
setting of iteration to prove lemma 6.2. To control the ways the algebraic limit can
cover the geometric limit, we recall certain facts about their conformal boundaries.
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Combining continuous variance of the limit sets in the geometric topology [KT,
Cor. 2.2] with theCarathéodory convergence theordiu, Thm. 3.1], Kerckhoff
and Thurston analyze algebraic and geometric convergence in a Bers slice in terms
of the sphere at infinity (see [KT, Prop. 2.3]): in the Caeatthory topology ompen
subsets ofC, a sequence of open subséts C C converges to an open subset
2 c Cif and only if the complement$@ — {2;) converge to(@ — {2) in the
Hausdorff topology (see [IM, 4.1] [KT, Prop. 2.3]).

Proposition 6.6 CARATHEODORY CONVERGENCE Let (); € By converge al-
gebraically toQ., and geometrically taV covered byQ... Let convergent lifts
(Qi,wi) = (Qooswoo) 10 AH,,(S) with geometric limit( N, w) determine Kleinian
groupsrl;, I's, and I respectively. Lef2, (I;) C 2(I3) coverY C 9Q; and let
0_(I}) = 2(I3) — 24 (I3). Then

1. the limit setsA([;) converge tal (1) in the Hausdorff topology,

2. after passing to a subsequence so tat[;,) — £, and2_(I};) — 2, we
have2, N 2_ =o, 2(Ig) = 2+ U N_,and 2, and 2_ are [ g-invariant,

3. the componen®y C 2(I,,) coveringY C 9Q. embeds in2, c 2(Ig).

Proof. Assertion (1) is proven in [KT, Cor. 2.2] for quasi-Fuchsian groups and fol-
lows from [Mc2, Prop. 2.4] and [Can2, Thm. 6.2] in general.

For assertion (2), if lies in 2, N §2_, thenz lies in $2, (I;) N 2_(I7;) for
all i; > 0, which contradicts the fact tha? (I;) N 24 (I;) = @ for all i. Thus
2, N0 =@ If zliesin 2(I'g), thenxz has an open neighborhood that lies in
infinitely many (2, (15,) or infinitely many(2_(I,) sox liesin§2, LI§2_. Likewise,
if 2 lies in 2, thenz lies in 2, (I3;) C 2(13;) forall i; > 0, sox lies in (1),
and similarly forz € 2_. Thus2¢ = 2, U 2_. If y lies in £2, then it has a
neighborhood contained if?.(15,) for all i; > 0. The same holds far € §2_,
provided(2_ is non-empty. If there were an element I for which~(y) = z it
would be the limit of elements;, € I';; with the property thaty; (y;;) = z with
yi; — y contradicting thel’;, -invariance of(2, (I;,) and2_(I;;). Thus{, and
{2_ are each g-invariant and assertion (2) follows.

For assertion (3), since th@; range inBy, 2y is the imagews,(A) of the
unit disk A under the locally uniform limitw,, of a sequence of univalent maps
w;i: A — C with wi(A) = 2,(I3) (see [Bers2], [KT§2]). By the Caratbodory
convergence theorem [Du, Thm. 3.4),.,(A) is a component of2,.. O

This proposition has the following consequence in the quotients (cf. [JM]).

Corollary 6.7 LetQ; — Qo be a convergent sequencelty. Then for any geo-
metric limit N' covered byQ)~,, the covering mapr: Qo — N extends to a holo-
morphic embedding oF C 0Q) .

Proof. By proposition 6.6, the covering mapextends to the finite area Riemann
surfaceY” by a locally isometric covering map: ¥ — Z forsomeZ C ON. Thus,
7 is finite to one.
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We claim7 is an embedding. Choose baseframes determining Kleinian groups
as in proposition 6.6. Ifr is not an embedding, then the algebraic lifit, has
finite index in the stabilizer Stab ({2y) of 2y in I';. Thus, there is an element
in Staly, (£2y') that does not lie i, but so thaty* e I',..

By a standard argument [JM, Lem. 3.6)if are representations determined by
(Qs,w;), and we havey;(g) — ~+* for someg € 71(S), andp;(h;) — ~ for h; €
71(9), theng = h¥ for all i > 0. By unique divisibility of 1 (S), h; = h € m1(S)
forall : > 0 and thusp;(h) — ~. Thus,y lies in I's,, so7 is an embedding. O

Iteration converges.We now apply the gluing lemma to the setting of iteration to
prove lemma 6.2. Theorem 6.1 will follow.

Proof (of lemma 6.2)Fix (X,Y) € Teich(S) x Teich(S). LetQ; = Q(¢'X,Y)
denote the iteration of the mapping clasen the Bers slicéBy . The proof divides
into cases.

Case 1:Sg(y) is the entire surfaceS. If Sg(¢) = S theny has finite ordes.
Then thes algebraic and geometric accumulation points are

QX,Y), Q(eX,Y),...,.Q¢ ' X,Y),
all of which are quasi-Fuchsian, and thence mutually quasi-isometric.

Case 2:Sk(¢p) is empty. Decomposition 4.8 guarantees that the liQit has a
unique component” = 9Q,, in its conformal boundary if and only 8¢ (¢) = @.
HenceQ),, is totally degenerate.

We claim any such accumulation point is a strong limit: . = Q. Let
Q, = H3/I', coverN = /I so thatl}, < I. By corollary 6.7, the unique
component?y of the domain of discontinuity2(/7,) embeds in the domain of dis-
continuity 2(I'), sof2(I'z) = £2y. Moreover, the natural covering: Q, — N
extends to a holomorphic embedding on the unique companenio@,,. Thus the
covering

Qv /T, — Q1))

is a homeomorphism and we halg = I. It follows that N = @, and likewise
N’ = @Q, so this case follows from theorem 5.7.

Case 3:Sg(¢) is neither the entire surfaceS, nor empty. We reduce to the case
thaty is stable as follows.

Reduction to stable caseet Q; = Q(¢'X,Y). As remarked in section 4, if a
subsequence);; converges ta), then for any accumulation poir@; of Qi;+1,
we haved(Q,, Q),) < oo by lower semi-continuity ofi(.,.) [Mc2, Prop. 3.1]. In
other words, there is a marking preserving quasi-isometry figno Q:O.

A similar argument works for geometric limits: pass to a subsequence so that
{Qi;} converges geometrically to a lim¥ covered byQ,. Let Q;, be a limit of
{Qi,+1} coveringN' after passing to further subsequences. Then as in the proof of
theorem 5.4, quasi-isometriés : Q;; — Q;;+1 have lifts that extend to uniformly
quasiconformal conjugacies, which converge up to subsequence. Any limit descends
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to a marking-preserving quasi-isomeey Q, — @, that covers a quasi-isometry
©: N — N’ between pairs of geometric accumulation points.

Thus, it suffices to prove lemma 6.2 for any finite powepp§o we may assume
 is stable. We fix our attention on one componEntC Sg(p). The stable mapping
classy stabilizes the isotopy class of each elemewrt 7 (Fp).

The re-marking trickThe re-markings~*(Q(¢'X,Y)) = Q(X, ¢ *Y) range in

a precompact slice af F'(S) obtained by fixing the first factor in the parameter-
ization. After passing to successive subsequences s¢@at X,Y)} converges
algebraically toQ),,, and geometrically to a limifv covered byQ,,, pass to a fur-
ther algebraically convergent sequence of re-marki@6X, ¢~ 'Y} converging
to Q,-1. Let

(fir §—=Qi) = (f: S—Qp) and (g;: S — Qi) — (g: 5 — Q1)

denote their implicit markings. By theorem 4.7, for each compoigntf Sg ()
the subgrougy.,. (71 (Fv)) is quasi-Fuchsian, as ig (71 (Fp)).
Let
3qu¢:W1L|...|_|Wq and aquWl :ZlLl...Lqu

be quasi-Fuchsian conformal boundary components suchith& uniformized by
fx(m1(Fy)) and Z, is uniformized byg, (7 (F},)) for eachF,, C Sg(p). There is a
natural gluing involution

T: 8qu¢ = 8qu¢71

determined up to isotopy by the condition that= id,, r,) foreachn = 1,... ,q.

Lemma 6.8 THE RE-MARKING LEMMA. The manifold),, Q-1 solves the glu-
ing problemr, and(Q, U Q,-1)/7 is isometric to the geometric limiV.

Proof. Using the same indices, we pass to the chosen subsequences of
QW' X,Y)=(fi: § — Qi) and Q(X,¢™'Y) = (gi: S — Qi).

We apply the gluing lemma to these subsequences with respect to the duyface
Se(p). We claim these subsequences satisfy its hypotheses.

First, sincey preserves the isotopy class of eaghe 1 (F)), the subgroup
(fi)«lm (Fp) 1S cOnjugate ta(g;)«|r, () IN m1(Qi). SO Q-1 also coversN by a
locally isometric covering compatible with andg, on i (Fp).

We now check the other hypotheses.

Hypothesis a)That the restrictiory, (71 (Fp)) of f. to w1 (Fy) has quasi-Fuchsian
image (and similarly fog,) follows from theorem 4.7. The coverings ¢f, and
Q-1 corresponding t¢f. (w1 (Fp)) andg. (1 (Fo)) are isometrically identified with
the quasi-Fuchsian manifoldy, € QF(Fy).

Hypothesis b):It remains to verify that in passing to the quasi-Fuchsian cover
Qo the surfacedlVy C 04Q, and Z, C aquw—l uniformized by f. (71 (Fp))
and g, (m1 (Fp)) lift to distinct components 0HQ,. We appeal to baseframes and
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Kleinian groups to make use of Caratidory convergence. Fix a baseframe=
Qo- Then(Qo, w) determines the quasi-Fuchsian graup Let

dp: QO - Qtp and qp—1 QO - ng

denote the locally isometric covering projections, and let

(Qprap(w)) = (H2,3)/T, and (Qp-1,4p-1(w)) = (B, &)/ I,

for Kleinian groupsl’, and/,-1. Then[} is a subgroup of ;, and ',
The coveringyp,: Q, — N andp,-1: Q,—1 — N, being compatible on
m1(Fp), determine the diagram of covering spaces

/\
\/

The baseframg,, o ¢,(w) € N determines the geometric limit Kleinian grotip:
sothatl’, < I'gandl,-1 < Ig.

Let Qy C 2(Iy,) andQX C §2(I',-1) denote the invariant components iy
andl,-:. The componentszy andQX coverY = 2y /I, andX = QX/FSD_L
The limit sets are their frontietd(I,) = 02y andA(I,-1) = 92x.

By Caratl€odory convergence (proposition 6.6), the domdhsand 2y em-
bed disjointly in the domain of discontinuit§(I¢) so {2x lies in some comple-
mentary componenb C C — £2y. SinceD covers a quasi-Fuchsian component
of 9Q,, OD is a Jordan curve. Agy is a common subgroup df, and I, -1, its
limit set A(Ip) lies in the intersectio®(2x N 02y which is contained i®D. Since
A(Ip) is a Jordan curved(Ip) = 0D = 08y N 0f2x. Thus2x and 2y lie on
different sides ofA(/}), and we conclude that the componeiity C 0@, and
Zp C 9Q -1 lift to distinct components af(Qo.

Having satisfied the hypotheses of lemma 6.5 for arbit@ryC Sg(p), the
manifoldQ, LI Q-1 is a solution to the gluing problem: 04sQ, = 04¢Q,—1 that
covers the geometric limitv compatibly with7. Applying Gl , (Q, U Q,-1)/T
coversN by a local isometry

T (QpuUQyu-1)/T — N.

Applying GI, we haved ((Q, LU Q,-1)/7) = X UY. Letting I; < I'; be the
subgroup so thatQ, U Q,-1)/7 = H? /I, the domain of discontinuity2(I7,)
consists of2x, £2y and their translates undék. Sincel’; is a subgroup of ¢, we
have2(I'z) C £2(I%). By proposition 6.6, the domain@x and {2y embed in2¢,



Iteration of mapping classes and limits of hyperbolic 3-manifolds 37

so since each elemente I, lies in I'g, all translates of2x and {2y by elements
of I'; also embed in2(I). Thus we have2(I.) C 2(I) which implies that

Q1) = 2Ig).
It follows that the locally isometric covering extends to a covering map
T 2Ig) /> — 2I6)/Tc.
But by corollary 6.77 is an embedding on each componghandY of
9 ((QuUQyp-1)/7).

By proposition 6.6, the orbitE(2x) and'¢(f2y) are disjoint, sor extends to an
embeddingr on the disjoint unionX LY. SinceX UY = Q2(I'g)/ I, it follows
that7 is a holomorphic isomorphism, 96 = I'. Thus,x is an isometry. O

Remark: In the final step of the proof, use of the conformal boundary obviates the
need for any discussion of how simply degenerate ends cover in the natural covering
(Qy UQ,-1)/T — N, atopic of considerable subtlety and interest in its own right
(see [Th1§9] [Can2] [AC], for example).

Continuation of the proof of lemma 6.By theorem 5.7, there are marking-
preserving quasi-isometries

Op: Qp — QZD and Qw—l: ng—l — Q;,l
which we view as a marking-preserving quasi-isometry
@: QSDUQSD_l HpruQip_l

The disjoint uniong), LI Q-1 and @, U Q;_l, then, lie in the same deformation
space, and they are solutions to a common gluing problem

T: 8qu¢ =] aquSD—l,

namely, the natural gluing problem of the re-marking lemma (lemma 6.8). By theo-
rem 6.4, there is a quasi-isometry

O;: (ng U Qgp*l)/T - (pr U Q;,l)/T.
By the re-marking lemma®)-- is a quasi-isometry
O,: N—- N

between the geometric accumulation poiftsand N’ of the iteration ofp on By.
Lemma 6.2 follows, sinc®) is covered by a marking-preserving quasi-isometry

éVT: Qp — Q:o a

Remark: The quasi-isometr®, also lifts to a marking-preserving quasi-isometry
—~/
@7— : Qtpfl - Q:O—l-

Applying lemma 6.2, we prove geometric, and thence algebraic, convergence.
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Proof (of theorem 6.1)Xonsider again the cases of lemma 6.2.
Case 1:If Sg(¢) = S then stability impliesp = id and there is nothing to prove.

Case 2:If Sg(p) = @, then for any pair of accumulation poin(s, and @, of
{Q(¢'X,Y)}, Case 2 of the proof of lemma 6.2 implies thed, = Y = 0Q/, and
thatQ, andQ:D are each strong limits. Since

Def(Q,) = Teich(9Q,,) = Teich(S),

and there is a marking-preserving quasi-isométryQ),, — QQ,, Qy andQ; repre-
sent the same point in DE),,). HenceQ, = Q/,, and the sequend@)(¢' X,Y)}
converges strongly tQ.,.

Case 3:AssumeSg(y) # S, 2. LetQ, andQ;, be any two algebraic accumulation

points of{Q(¢' X, Y)}3°, and letN and N’ be geometric accumulation points they
cover. As in the re-marking lemma, 1€, andc;):()_1 be corresponding limits of

the re-markingg Q (X, »—"Y")} after passing to further subsequences.
By lemma 6.2 (and its proof), there is a quasi-isometry

6,: N - N’

that lifts to quasi-isometrie9, : Q, — Q, and@T/: Qp-1 — Q:a,l each compat-
ible with markings.

Since the injectivity radius oV is bounded throughout its convex core and its
conformal boundary is incompressible, we have

Def(N) = Teich(ON) = Teich(S) x Teich(S).

AsON = X UY = dN’, O, is homotopic to an isometry: N — N’'. Geometric
convergence follows.

Lifting £ to a marking-preserving isomet& Q, — Q,,, we conclude that
{Q(¢'X,Y)} converges algebraically as wellO

Corollary 6.9 STRONG CONVERGENCE Let ¢ € Mod(S) be a mapping class.
Then the sequendg)(¢*X,Y)} converges strongly if and only if the finite order
subsurfacese () is empty orSg(p) = S.

If Se(¢) = S then the limit does not depend h

Proof. We proved the condition is sufficient above. To see it is also necessary, ob-
serve that wherbg(y) is not the whole surface and also non-empty, lemma 6.8
realizes any geometric limiV' as a nontrivial gluing@Q, Q1) /7 of algebraic ac-
cumulation pointg), and@,,-:. It follows that the natural covering map, — N
is not an embedding, and the convergence is not strong.

Rep!acingX with X produces a limiQ;, lying in Def(_Qge). WhenSg(p) = S
we again havéQ, =Y = 9Q,,, soQ, = Q, and the limit does not depend on
X. O

For completeness, we include the following corollary (cf. [Bers4, Lem. 2a]). An
essential subsurfac® C S isrigid if int(S’) consists of triply punctured spheres.
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Corollary 6.10 Letp € Mod(S) be a mapping class. If the finite order subsur-
face Sk(y) is rigid, then for any(X,Y) € Teich(S) x Teich(S), the sequence
{Q(¢'X,Y)}2, converges algebraically to a limit that does not dependtan

Proof. If Sg(¢) is rigid, then for any limitQ,, of {Q (' X, Y)} the surfaces iDQ,,
other thanY” have no moduli. Thus, Déf),,) = Teich(S). The same holds for any
limit Q, of {Q(¢' X', Y)} with X’ in place of X, soQ,, and Q., determine the
same point in Dei),). O

Corollary 6.11 If dimc(Teich(S)) = 1, andy € Mod(S) has infinite order, then
for any (X,Y) € Teich(S) x Teich(S) the sequencéQ (¢’ X,Y)}2, converges
algebraically to a limit that does not depend an

Proof. Since the dimensiodimc (Teich(S)) = 1, eitherSg(¢) = @ or int(Sg())
is a pair of triply punctured spheres. Hengg() is either empty or rigid, and the
corollary follows from corollaries 6.9 and 6.100

Finite order behavior. Finally, we justify the hypothesis of stability.

Theorem 6.12 FINITE-ORDER NON-CONVERGENCE Given anysS for which the
complex dimensiodim¢ (Teich(S)) > 1, there existgp € Mod(S) of infinite order
and X € Teich(S) such that in any Bers slicBy the sequencéQ(¢'X,Y )},
has more than one algebraic accumulation poinfip.

Proof. Let S have genug with n boundary components. The complex dimension
of the Teichmuiller space Teictt) is given in terms of; andn by the formula

dimc(Teich(S)) =39 — 3+ n.

If dimc(Teich(S)) > 1 then eitherg = 0 andn > 5,9 = 1 andn > 2 or

g > 2. There is an essential proper subsurface S such that the interior iff")

is homeomorphic either to a punctured torus or a sphere with four points removed,
and so thaf" has precisely one boundary component 97 not in common with

S (see figure 8). Then there is a mapping clkass Mod(.S) so that

Y
g>0

Figure 8. The subsurface T C S.

1. ¢ induces an ordets element of ModT") via restriction,
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2. there is an isotopy class of essential non-peripheral simple closed eutvds
with i(¢(a), ) # 0, and
3. p*® is a single Dehn twist aboyt

Sincey? is stable, corollary 6.3 implies that for ady € Teich(S) the sequence
{Q(¢'X,Y)}22, has a most accumulation points

= lim Q(¢***X,Y), a=0,...,5s—1,
1—00

with geometric limitsNg, ... , Ns_1.

The geometric limitVy has conformal bounda@Ny = X LY in the markings
induced by the gluing in lemma 6.2. Likewise, we h@®&; = X LY since this
limit is obtained from iteration of* on By beginning at) (¢ X,Y).

The algebraic limitg), and(@; each have quasi-Fuchsian covers corresponding
toT. Let Zy C dQo andZ; C 9Q; be elements of Tei¢ll") in the conformal
boundary ofy and@; uniformized by the quasi-Fuchsian subgroup corresponding
to T'. In the coveringly — N, the surfaceX c 9N, lifts to a surfac;egc 9Qo
that includes into the surfacg. Likewisep X C 9N lifts to a surfacep X — Z;.

By the collar lemma (see [Bus, Thm. 4.1.1]), givéh > 0 we may choose
e > 0 so that if X is a Riemann surface on which the simple closed curVes
lengthy (@) < € then the annulak -neighborhood oft in the coverX of X corre-
sponding to{«) 2 Z embeds in the covering projection 1.

Taking K sufficiently large to ensure that the correspondiigless thank’, we
chooseX € Teich(.S) on which Iengtl}(a) < €. Then

length, x (¢(a)) <€ and length (o) > K.

The covennng — X and <pX — X are isometric in the Poincametrics,
and the inclusionsy Zy and ng < Z; induce contractions of the Poinear’
metrics [Mc2, Prop. 4.9]. It follows that

length, (a) < e and length (p(a)) <e.

Applying the collar lemma, we have that lengtiia) > 2K > ¢, which implies
thatZy # Z; in Teich(T)).

Hence, there is no isometry betwe€g and @, that respects markings, $g
and(@ represent distinct points i\By. O

7 Quasi-isometric models

In this section we describe how quasi-isometric models for the algebraic and geo-
metric limits of iteration ofp € Mod(.S) on a Bers’ slice can be constructed directly
from .

Models for algebraic limits. It suffices to build a quasi-isometric model for limits
of stable iteration. Lep € Mod(S) be a stable mapping class.
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Structure of Q. Let P, be the cuspidal thin part @.. Let {Aj}g?:l enumerate

the annuli inN (II(y)), let {S,,}¥,_, enumerate components 6% (y), and let
{F,}1_, enumerate components 8f ().
Then as in decomposition 4.8, any relative compact core

Lot (Mg, Pp) — (Qp — Py, 0F)
has the following form up to diffeomorphism.

1L M,=85x1,
2. P, =(0S x 1)U (UleAj x {0}), and
3. M, =Y U (U S, x{0})U(UL_ F, x {0}) whereY = S x 1.

For any mapping clasg € Mod(S), the mapping torug), is quasi-isometrically
unique by compactness of its pared submanifold. Thus, the ddyerorresponding
to the fiber is as well, so when is pseudo-Anosov we may describe the quasi-
isometric geometry o/, without reference to specific hyperbolic structures.

To construct a quasi-isometric model 1Qr,, we note that by corollary 2.14 it
suffices to give a quasi-isometric model for the pared submanifold of its convex
core; the geometrically finite ends carry no essential quasi-isometric data.

We take any differentiable structure @M., P,;) above.

Periodic ends:Let ), be the pseudo-Anosov mapping class induced,qrby the
first iterate ofyp that leavesS,, invariant. For each surfacg,, x {0} constructan
end&}, by fixing a smooth structure off,,, x {0}) x [0, 1] and gluing successive
copies end to end in the negative direction by a diffeomorphism represefing
The resulting end!,, marked by the inclusion,, : S,, — &}, is quasi-isometric to
the negative end ai/,,-. marked by the lift of the fibes,,,.

Adjoin each&}, m = 1,... ,p, to (M, P,) alongS,, x {0} by the identity.
Call the resulting manifol@?,. Then we have the following.

Proposition 7.1 The modeMy is quasi-isometric to a neighborhood of the pared
submanifold of the convex core@f,. O

Models for geometric limits. When iteration is not strongly convergei¥, is re-
alized as the gluingQ, U Q,-1)/7 of Q,, with the limit Q- of its re-markings
{Q(X, 9~ "Y)}2,, by lemma 6.8. In this case, the Klein-Maskit theory (see theo-
rem 6.4) gives a quasi-isometric model for any gluiy + explicitly in terms of

M and the gluing data. From this argument, it follows that the geometric Imit

has a standard quasi-isometric model when the iteration is not strongly convergent.

Structure of Q,-1. As above, letP,-: be the cuspidal thin part @) .. Then
Q.1 100 has a relative compact core

to—1: (My-1,Pp1) = (Qu-1 — Pp1,0P,1)
with the following form up to diffeomorphism.
1. Mtpfl >S5 % I,
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2. Py1=(0SxI)U (U§:1Aj x {1}), and
3. oMy—1 = X U (U _ S x {1}) U (UL_  F,, x {1}) whereX = S x {0}.

As above, for each surfacg,, construct an end;, by gluing a half infinite
collection of copies of5,,, x {1} x [0,1] end to end in thegositivedirection by a
diffeomorphism representing;.!. Then&! is quasi-isometric to thpositiveend
of the pared submanifold af/, .. After adjoining each end;, to (My-1,P,-1)
alongsS,, x {1}, denote the resulting model for the pared submanifold of the convex

core by ,-1.

Gluing: LetT: {Ul_, F,, x {0}} — {U!_, F, x {1}} be the defined by the iden-
tification 7'(z,0) = (z,1). Then by the proof of theorem 6.4, and lemma 6.8 this
gluing determines the quasi-isometric model for the geometric limit (figure 9).

Theorem 7.2 If Q(¢'X,Y) does not converge strongly, then the gluing
My M
T

is quasi-isometric to a smooth neighborhood of the pared submanifold of the convex
core of N. O

Figure 9. Gluing the models 9t,, and 9311 by T'.

Recall thatD, C S is the subsurface of determined up to isotopy by —
Se(p). As a consequence, we have:

Theorem 7.3 HOMEOMORPHISMTYPES. Let N be the geometric limit of iteration
of ¢ € Mod(S). Then eitherD, = S and N has the homeomorphism typé =
int(S) x R, or N has the homeomorphism type

N =int(S) x R — D, x {0}. O
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The annuli inD,, recede to rank-2 cusps, while each of the subsurféges D,
of negative Euler characteristic recede to infinity leaving a pair of quasi-periodic
simply degenerate ends.
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